Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient Visual-Aware Fashion Recommendation Using Compressed Node Features and Graph-Based Learning

Malhi, Umar Subhan; Zhou, Junfeng; Rasool, Abdur; Siddeeq, Shahbaz (2024-09)

 
Avaa tiedosto
make-06-00104.pdf (3.337Mt)
Lataukset: 



Malhi, Umar Subhan
Zhou, Junfeng
Rasool, Abdur
Siddeeq, Shahbaz
09 / 2024

Machine Learning and Knowledge Extraction
doi:10.3390/make6030104
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202410319701

Kuvaus

Peer reviewed
Tiivistelmä
<p>In fashion e-commerce, predicting item compatibility using visual features remains a significant challenge. Current recommendation systems often struggle to incorporate high-dimensional visual data into graph-based learning models effectively. This limitation presents a substantial opportunity to enhance the precision and effectiveness of fashion recommendations. In this paper, we present the Visual-aware Graph Convolutional Network (VAGCN). This novel framework helps improve how visual features can be incorporated into graph-based learning systems for fashion item compatibility predictions. The VAGCN framework employs a deep-stacked autoencoder to convert the input image’s high-dimensional raw CNN visual features into more manageable low-dimensional representations. In addition to improving feature representation, the GCN can also reason more intelligently about predictions, which would not be possible without this compression. The GCN encoder processes nodes in the graph to capture structural and feature correlation. Following the GCN encoder, the refined embeddings are input to a multi-layer perceptron (MLP) to calculate compatibility scores. The approach extends to using neighborhood information only during the testing phase to help with training efficiency and generalizability in practical scenarios, a key characteristic of our model. By leveraging its ability to capture latent visual features and neighborhood-based learning, VAGCN thoroughly investigates item compatibility across various categories. This method significantly improves predictive accuracy, consistently outperforming existing benchmarks. These contributions tackle significant scalability and computational efficiency challenges, showcasing the potential transformation of recommendation systems through enhanced feature representation, paving the way for further innovations in the fashion domain.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20161]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste