Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational imaging for rapid detection of grade-I cerebral small vessel disease (cSVD)

Shahid, Saman; Wali, Aamir; Iftikhar, Sadaf; Shaukat, Suneela; Zikria, Shahid; Rasheed, Jawad; Asuroglu, Tunc (2024-09-30)

 
Avaa tiedosto
1-s2.0-S2405844024137747-main.pdf (5.544Mt)
1-s2.0-S2405844024137747-main.pdf (5.544Mt)
Lataukset: 



Shahid, Saman
Wali, Aamir
Iftikhar, Sadaf
Shaukat, Suneela
Zikria, Shahid
Rasheed, Jawad
Asuroglu, Tunc
30.09.2024

Heliyon
e37743
doi:10.1016/j.heliyon.2024.e37743
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202409248878

Kuvaus

Peer reviewed
Tiivistelmä
<p>An early identification and subsequent management of cerebral small vessel disease (cSVD) grade 1 can delay progression into grades II and III. Machine learning algorithms have shown considerable promise in medical image interpretation automation. An experimental cross-sectional study aimed to develop an automated computer-aided diagnostic system based on AI (artificial intelligence) tools to detect grade 1-cSVD with improved accuracy. Patients with Fazekas grade 1 cSVD on Non-Contrast Magnetic Resonance Imaging (MRI) Brain of age >40 years of both genders were included. The dataset was pre-processed to be fed into a 3D convolutional neural network (CNN) model. A 3D stack with the shape (120, 128, 128, 1) containing axial slices from the brain magnetic resonance image was created. The model was created from scratch and contained four convolutional and three fully connected (FC) layers. The dataset was preprocessed by making a 3D stack, and normalizing, resizing, and completing the stack was performed. A 3D-CNN model architecture was designed to train and test preprocessed images. We achieved an accuracy of 93.12 % when 2D axial slices were used. When the 2D slices of a patient were stacked to form a 3D image, an accuracy of 85.71 % was achieved on the test set. Overall, the 3D-CNN model performed very well on the test set. The earliest and the most accurate diagnosis from computational imaging methods can help reduce the huge burden of cSVD and its associated morbidity in the form of vascular dementia.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20161]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste