Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Make Split, not Hijack: Preventing Feature-Space Hijacking Attacks in Split Learning

Khan, Tanveer; Budzys, Mindaugas; Michalas, Antonis (2024-06-24)

 
Avaa tiedosto
Make_Split_not_Hijack_Preventing_Feature-Space_Hijacking_Attacks_in_Split_Learning.pdf (1.775Mt)
Lataukset: 



Khan, Tanveer
Budzys, Mindaugas
Michalas, Antonis
24.06.2024

doi:10.1145/3649158.3657039
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202407317832

Kuvaus

Peer reviewed
Tiivistelmä
The popularity of Machine Learning (ML) makes the privacy of sensitive data more imperative than ever. Collaborative learning techniques like Split Learning (SL) aim to protect client data while enhancing ML processes. Though promising, SL has been proved to be vulnerable to a plethora of attacks, thus raising concerns about its effectiveness on data privacy. In this work, we introduce a hybrid approach combining SL and Function Secret Sharing (FSS) to ensure client data privacy. The client adds a random mask to the activation map before sending it to the servers. The servers cannot access the original function but instead work with shares generated using FSS. Consequently, during both forward and backward propagation, the servers cannot reconstruct the client's raw data from the activation map. Furthermore, through visual invertibility, we demonstrate that the server is incapable of reconstructing the raw image data from the activation map when using FSS. It enhances privacy by reducing privacy leakage compared to other SL-based approaches where the server can access client input information. Our approach also ensures security against feature space hijacking attack, protecting sensitive information from potential manipulation. Our protocols yield promising results, reducing communication overhead by over 2× and training time by over 7× compared to the same model with FSS, without any SL. Also, we show that our approach achieves > 96% accuracy and remains equivalent to the plaintext models.
Kokoelmat
  • TUNICRIS-julkaisut [20709]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste