Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Standardized Kalman filtering for dynamical source localization of concurrent subcortical and cortical brain activity

Lahtinen, Joonas; Ronni, Paavo; Puthanmadam Subramaniyam, Narayan; Koulouri, Alexandra; Wolters, Carsten; Pursiainen, Sampsa (2024-12)

 
Avaa tiedosto
1-s2.0-S1388245724002803-main.pdf (1.826Mt)
Lataukset: 



Lahtinen, Joonas
Ronni, Paavo
Puthanmadam Subramaniyam, Narayan
Koulouri, Alexandra
Wolters, Carsten
Pursiainen, Sampsa
12 / 2024

Clinical Neurophysiology
doi:10.1016/j.clinph.2024.09.021
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202410299591

Kuvaus

Peer reviewed
Tiivistelmä
<p>Objective: We introduce standardized Kalman filtering (SKF) as a new spatiotemporal method for tracking brain activity. Via the Kalman filtering scheme, the computational workload is low, and by spatiotemporal standardization, we reduce the depth bias of non-standardized Kalman filtering (KF). Methods: We describe the standardized KF methodology for spatiotemporal tracking from the Bayesian perspective. We construct a realistic simulation setup that resembles activity due to somatosensory evoked potential (SEP) to validate the proposed methodology before we run our tests using real SEP data. Results: In the experiments, SKF was compared with standardized low-resolution brain electromagnetic tomography (sLORETA) and the non-standardized KF. SKF localized the cortical and subcortical SEP originators appropriately and tracked P20/N20 originators for investigated signal-to-noise ratios (25, 15, and 5 dB). sLORETA distinguished those for 25 and 15 dB suppressing the subcortical originators. KF tracked only the evolution of cortical activity but mislocalized it. Conclusions: The numerical results suggest that SKF inherits the estimation accuracy of sLORETA and traceability of KF while producing focal estimates for SEP originators. Significance: SKF could help study time-evolving brain activities and localize landmarks with a deep contributor or when there is no prior knowledge of evolution.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20127]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste