Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transient zonal model for predicting indoor airflows in naturally ventilated buildings: A case study of hospital patient rooms

Lastovets, Natalia; Luoto, Anni; Elsayed, Mohamed; Sormunen, Piia (2024-08-07)

 
Avaa tiedosto
e3sconf_bsn2024_09004.pdf (2.887Mt)
Lataukset: 



Lastovets, Natalia
Luoto, Anni
Elsayed, Mohamed
Sormunen, Piia
07.08.2024

09004
doi:10.1051/e3sconf/202456209004
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202409098603

Kuvaus

Peer reviewed
Tiivistelmä
<p>Proper ventilation dilutes viral concentrations and reduces infection risk. Advanced simulation methods are needed to understand indoor airflow dynamics in naturally ventilated spaces, like hospital patient rooms. Predicting airflow distribution is complex due to factors such as variable opening sizes, changing weather conditions, and exhaust shaft locations. Simulation methods, such as Computational Fluid Dynamics (CFD), building energy simulation, and analytical mathematical models are used to address these challenges. Zonal models, in particular, bridge the gap between the simplicity of standard perfectly mixed room air assumptions and the computational intensity of CFD simulations. This research presents a case study of patient rooms in a hospital located in Romania. The study focuses on validating a coarse grid zonal model implemented in the building simulation tool IDA ICE for predicting indoor airflow in patient rooms with natural ventilation. The model is validated against field measurements of indoor air parameters in the patient room. This study demonstrates the capability of a one-dimensional transient zonal model integrated into building simulation software to predict main indoor air distribution patterns. This model requires minimal prior knowledge of airflow characteristics, making it a versatile tool for predicting indoor air quality in naturally ventilated hospital buildings. The method can identify risky areas for infection control and optimise ventilation in healthcare facilities.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20689]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste