Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Encouraging Grading: Per Aspera Ad A-Stars

Niemelä, Pia; Hukkanen, Jenni; Nurminen, Mikko; Huhtamäki, Jukka (2024)

 
Avaa tiedosto
Springer_Lecture_Notes_in_Computer_Science_CSEDU23BookChapter.pdf (570.9Kt)
Lataukset: 



Niemelä, Pia
Hukkanen, Jenni
Nurminen, Mikko
Huhtamäki, Jukka
2024

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1007/978-3-031-53656-4_2
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202405316536

Kuvaus

Peer reviewed
Tiivistelmä
<p>The surge in computer science student enrollment in Data Structures and Algorithm course necessitates flexible teaching strategies, accommodating both struggling and proficient learners. This study examines the shift from manual grading to auto-graded and peer-reviewed assessments, investigating student preferences and their impact on growth and improvement. Utilizing data from Plussa LMS and GitLab, auto-graders allow iterative submissions and quick feedback. Initially met with skepticism, peer-review gained acceptance, offering valuable exercises for reviewers and alternative solutions for reviewees. Auto-grading became the favored approach due to its swift feedback, facilitating iterative improvement. Furthermore, students expressed a preference for a substantial number of submissions, with the most frequently suggested count being 50 submissions. Manual grading, while supported due to its personal feedback, was considered impractical given the course scale. Auto-graders like unit-tests, integration tests, and perftests were well-received, with perftests and visualizations aligning with efficient code learning goals. In conclusion, used methods, such as auto-grading and peer-review, cater to diverse proficiency levels. These approaches encourage ongoing refinement, deepening engagement with challenging subjects, and fostering a growth mindset.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20683]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste