Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Perceptually Optimized Model for Near-Eye Light Field Reconstruction

Gudelek, Ugur; Sahin, Erdem; Gotchev, Atanas (2023)

 
Avaa tiedosto
Ugur_Gudelek_MMSP_2023.pdf (5.942Mt)
Lataukset: 



Gudelek, Ugur
Sahin, Erdem
Gotchev, Atanas
2023

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/MMSP59012.2023.10337716
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202408308441

Kuvaus

Peer reviewed
Tiivistelmä
<p>We present a learning model for reconstructing near-eye dense light field (LF) from a sparse set of multi-perspective views. The model integrates a fully-convolutional neural network and a model of the retinal image formation process optically connecting the pupil, retina and neural domains. Considering the problem of 9 × 9 near-eye LF reconstruction from the available five images, four at the corner viewpoints and one in the middle, we investigate the implications of using different loss functions in the learning process in terms of reconstruction qualities at different domains. Despite the utilized simplified retinal image formation model, the simulations reveal instructive results. In particular, combining the LF loss and the retinal focal stack loss is shown to improve the reconstruction quality of actual LF at the pupil plane, facilitating learning better features. On the other hand, concerning the retinal image quality, the model trained based on the same combination of losses is also demonstrated to produce better retinal images especially for non-Lambertian scenes, i.e., when there is monocular parallax, compared to model trained based on only retinal focal stack loss.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20161]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste