Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Corticosteroid Treatment Prediction using Chest X-ray and Clinical Data

Mezina, Anzhelika; Genzor, Samuel; Burget, Radim; Myska, Vojtech; Mizera, Jan; Ometov, Aleksandr (2023-12-07)

 
Avaa tiedosto
Corticosteroid_treatment_prediction_using_chest_X-ray_and_clinical_data.pdf (3.844Mt)
Lataukset: 



Mezina, Anzhelika
Genzor, Samuel
Burget, Radim
Myska, Vojtech
Mizera, Jan
Ometov, Aleksandr
07.12.2023

Computational and structural biotechnology journal
doi:10.1016/j.csbj.2023.11.057
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-2023121310797

Kuvaus

Peer reviewed
Tiivistelmä
Background and Objective: Severe courses of COVID-19 disease can lead to long-term complications. The post-acute phase of COVID-19 refers to the persistent or new symptoms. This problem is becoming more relevant with the increasing number of patients who have contracted COVID-19 and the emergence of new virus variants. In this case, preventive treatment with corticosteroids can be applied. However, not everyone benefits from the treatment, moreover, it can have severe side effects. Currently, no study would analyze who benefits from the treatment.<br/>Methods: This work introduces a novel approach to the recommendation of Corticosteroid (CS) treatment for patients in the post-acute phase. We have used a novel combination of clinical data, including blood tests, spirometry, and X-ray images from 273 patients. These are very challenging to collect, especially from patients in the post-acute phase of COVID-19. To our knowledge, no similar dataset exists in the literature. Moreover, we have proposed a unique methodology that combines machine learning and deep learning models based on Vision Transformer (ViT) and InceptionNet, preprocessing techniques, and pretraining strategies to deal with the specific characteristics of our data.<br/>Results: The experiments have proved that combining clinical data with CXR images achieves 8% higher accuracy than independent analysis of CXR images. The proposed method reached 80.0% accuracy (78.7% balanced accuracy) and a ROC AUC of 0.89.<br/>Conclusions: The introduced system for CS treatment prediction using our neural network and learning algorithm is unique in this field of research. Here, we have shown the efficiency of using mixed data and proved it on real-world data. The paper also introduces the factors that could be used to predict long-term complications. Additionally, this system was deployed to the hospital environment as a recommendation tool, which admits the clinical application of the proposed methodology.
Kokoelmat
  • TUNICRIS-julkaisut [20263]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste