Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic classification of hyperkinetic, tonic, and tonic-clonic seizures using unsupervised clustering of video signals

Ojanen, Petri; Kertész, Csaba; Morales, Elizabeth; Rai, Pragya; Annala, Kaapo; Knight, Andrew; Peltola, Jukka (2023)

 
Avaa tiedosto
fneur-14-1270482.pdf (787.4Kt)
Lataukset: 



Ojanen, Petri
Kertész, Csaba
Morales, Elizabeth
Rai, Pragya
Annala, Kaapo
Knight, Andrew
Peltola, Jukka
2023

Frontiers in Neurology
1270482
doi:10.3389/fneur.2023.1270482
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-2023122011085

Kuvaus

Peer reviewed
Tiivistelmä
<p>Introduction: This study evaluated the accuracy of motion signals extracted from video monitoring data to differentiate epileptic motor seizures in patients with drug-resistant epilepsy. 3D near-infrared video was recorded by the Nelli<sup>®</sup> seizure monitoring system (Tampere, Finland). Methods: 10 patients with 130 seizures were included in the training dataset, and 17 different patients with 98 seizures formed the testing dataset. Only seizures with unequivocal hyperkinetic, tonic, and tonic-clonic semiology were included. Motion features from the catch22 feature collection extracted from video were explored to transform the patients' videos into numerical time series for clustering and visualization. Results: Changes in feature generation provided incremental discrimination power to differentiate between hyperkinetic, tonic, and tonic-clonic seizures. Temporal motion features showed the best results in the unsupervised clustering analysis. Using these features, the system differentiated hyperkinetic, tonic and tonic-clonic seizures with 91, 88, and 45% accuracy after 100 cross-validation runs, respectively. F1-scores were 93, 90, and 37%, respectively. Overall accuracy and f1-score were 74%. Conclusion: The selected features of motion distinguished semiological differences within epileptic seizure types, enabling seizure classification to distinct motor seizure types. Further studies are needed with a larger dataset and additional seizure types. These results indicate the potential of video-based hybrid seizure monitoring systems to facilitate seizure classification improving the algorithmic processing and thus streamlining the clinical workflow for human annotators in hybrid (algorithmic-human) seizure monitoring systems.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20247]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste