Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

RAW2HSI: Learning-Based Hyperspectral Image Reconstruction from Low-Resolution Noisy Raw-RGB

Avagyan, Shushik; Katkovnik, Vladimir; Egiazarian, Karen (2023)

 
Avaa tiedosto
RAW2HSI_paper.pdf (7.196Mt)
Lataukset: 



Avagyan, Shushik
Katkovnik, Vladimir
Egiazarian, Karen
2023

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/ISPA58351.2023.10279165
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202401241759

Kuvaus

Peer reviewed
Tiivistelmä
<p>In this paper, the problem of generating (hallucinating) a high-resolution hyperspectral image from a single low-resolution raw-RGB image is considered. To solve this problem, a general learning-based framework is proposed. It consists of two modules: a data adaptation module, and a backbone, deep feature extraction module. The data adaptation module is a shallow network consisting of pixel shuffling/unshuffling and shallow feature extraction. The deep feature extraction module which is an inherent part of many spectral reconstruction networks, aims at spectral super-resolution. Different spectral reconstruction networks have been studied as the backbone modules in the proposed framework. As a result of extensive simulations, it has been demonstrated that the proposed solution significantly outperforms the sequential approach of combining several state-of-the-art methods of image demosaicing, denoising, spatial and spectral super-resolution (by up to 6 dB in PSNR), and has large savings in the computational complexity (by over 5 times) with respect to the sequential method.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20210]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste