Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Representation Learning for Audio Privacy Preservation Using Source Separation and Robust Adversarial Learning

Luong, Diep; Tran, Minh; Gharib, Shayan; Drossos, Konstantinos; Virtanen, Tuomas (2023)

 
Avaa tiedosto
2308.04960-2.pdf (1.582Mt)
Lataukset: 

URI
https://arxiv.org/abs/2308.04960


Luong, Diep
Tran, Minh
Gharib, Shayan
Drossos, Konstantinos
Virtanen, Tuomas
2023

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/WASPAA58266.2023.10248153
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-2023122211184

Kuvaus

Peer reviewed
Tiivistelmä
<p>Privacy preservation has long been a concern in smart acoustic monitoring systems, where speech can be passively recorded along with a target signal in the system's operating environment. In this study, we propose the integration of two commonly used approaches in privacy preservation: source separation and adversarial representation learning. The proposed system learns the latent representation of audio recordings such that it prevents differentiating between speech and non-speech recordings. Initially, the source separation network filters out some of the privacy-sensitive data, and during the adversarial learning process, the system will learn privacy-preserving representation on the filtered signal. We demonstrate the effectiveness of our proposed method by comparing our method against systems without source separation, without adversarial learning, and without both. Overall, our results suggest that the proposed system can significantly improve speech privacy preservation compared to that of using source separation or adversarial learning solely while maintaining good performance in the acoustic monitoring task.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20247]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste