Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Variational Neural Networks

Oleksiienko, Illia; Tran, Dat Thanh; Iosifidis, Alexandros (2023)

 
Avaa tiedosto
1-s2.0-S1877050923009134-main.pdf (725.7Kt)
Lataukset: 



Oleksiienko, Illia
Tran, Dat Thanh
Iosifidis, Alexandros
2023

doi:10.1016/j.procs.2023.08.148
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-2023122211185

Kuvaus

Peer reviewed
Tiivistelmä
<p>Bayesian Neural Networks provide a tool to estimate the uncertainty of a neural network by considering a distribution over weights and sampling different models for each input. In this paper, we propose a method for uncertainty estimation in neural networks which, instead of considering a distribution over weights, samples outputs of each layer from a corresponding Gaussian distribution, parametrized by the predictions of mean and variance sub-layers. In uncertainty quality estimation experiments, we show that the proposed method achieves better uncertainty quality than other single-bin Bayesian Model Averaging methods, such as Monte Carlo Dropout or Bayes By Backpropagation methods.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20161]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste