Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

An external attention-based feature ranker for large-scale feature selection

Xue, Yu; Zhang, Chenyi; Neri, Ferrante; Gabbouj, Moncef; Zhang, Yong (2023-12-03)

 
Avaa tiedosto
1-s2.0-S0950705123008341-main.pdf (2.118Mt)
Lataukset: 



Xue, Yu
Zhang, Chenyi
Neri, Ferrante
Gabbouj, Moncef
Zhang, Yong
03.12.2023

Knowledge-Based Systems
111084
doi:10.1016/j.knosys.2023.111084
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202311079443

Kuvaus

Peer reviewed
Tiivistelmä
<p>An important problem in data science, feature selection (FS) consists of finding the optimal subset of features and eliminating irrelevant or redundant features. The FS task on high-dimensional data is challenging for the FS methods currently available in the literature. To overcome this limitation, we propose a novel feature selection method called External Attention-Based Feature Ranker for Large-Scale Feature Selection (EAR-FS) whose function is based on the logic of an attention mechanism and a hybrid metaheuristic. EAR-FS comprises three interdependent modules: (1) in the training module design, a multilayer perceptron network endowed with an attention module is trained to fit the dataset; (2) in feature ranking by attention, the trained attention module is used for attention updating and to rank features according to their importance; 3) in subset generation, a two-stage heuristic approach is applied to determine a small number of features that still guarantee high-accuracy performance. The experimental benchmark comprised 26 datasets of small, large and very large sizes, ranging from 15 to 12,533 features. Experiments performed against the state-of-the-art algorithms of FS show that our algorithm is efficient at selecting a small number of features from large datasets while guaranteeing excellent levels of classification accuracy. For instance, EAR-FS demonstrated its capability to reduce the features of the 11 Tumor dataset by 97% while maintaining a classifier accuracy of over 93%.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20263]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste