Screening Mixed-Metal Sn2M(III)Ch2X3 Chalcohalides for Photovoltaic Applications
Li, Jingrui; Grandhi, G. Krishnamurthy; Vivo, Paola; Rinke, Patrick (2023-09-26)
Li, Jingrui
Grandhi, G. Krishnamurthy
Vivo, Paola
Rinke, Patrick
26.09.2023
Chemistry of Materials
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202310108719
https://urn.fi/URN:NBN:fi:tuni-202310108719
Kuvaus
Non peer reviewed
Tiivistelmä
Quaternary mixed-metal chalcohalides (Sn2M(III)Ch2X3) are emerging as promising lead-free, perovskite-inspired photovoltaic absorbers. Motivated by recent developments of a first Sn2SbS2I3-based device, we used density functional theory to identify lead-free Sn2M(III)Ch2X3 materials that are structurally and energetically stable within Cmcm, Cmc21, and P21/c space groups and have a band gap in the range of 0.7-2.0 eV to cover outdoor and indoor photovoltaic applications. A total of 27 Sn2M(III)Ch2X3 materials were studied, including Sb, Bi, and In for the M(III)-site, S, Se, and Te for the Ch-site, and Cl, Br, and I for the X-site. We identified 12 materials with a direct band gap that meet our requirements, namely, Sn2InS2Br3, Sn2InS2I3, Sn2InSe2Cl3, Sn2InSe2Br3, Sn2InTe2Br3, Sn2InTe2Cl3, Sn2SbS2I3, Sn2SbSe2Cl3, Sn2SbSe2I3, Sn2SbTe2Cl3, Sn2BiS2I3, and Sn2BiTe2Cl3. A database scan reveals that 9 of 12 are new compositions. For all 27 materials, P21/c is the thermodynamically preferred structure, followed by Cmc21. In Cmcm and Cmc21, mainly direct gaps occur, whereas indirect gaps occur in P21/c. To open up the possibility of band gap tuning in the future, we identified 12 promising Sn2M(III)1-aM(III)′aCh2-bCh′bX3-cX′c alloys, which fulfill our requirements, and an additional 69 materials by combining direct and indirect band gap compounds.
Kokoelmat
- TUNICRIS-julkaisut [19282]