Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interpretation of Magnetic Resonance Images of Temporomandibular Joint Disorders by Using Deep Learning

Ozsari, Sifa; Yapicioglu, Fatima Rabia; Yilmaz, Dilek; Kamburoglu, Kivanc; Guzel, Mehmet Serdar; Bostanci, Gazi Erkan; Acici, Koray; Asuroglu, Tunc (2023)

 
Avaa tiedosto
Interpretation_of_Magnetic_Resonance_Images_of_Temporomandibular_Joint_Disorders_by_Using_Deep_Learning.pdf (1.387Mt)
Lataukset: 



Ozsari, Sifa
Yapicioglu, Fatima Rabia
Yilmaz, Dilek
Kamburoglu, Kivanc
Guzel, Mehmet Serdar
Bostanci, Gazi Erkan
Acici, Koray
Asuroglu, Tunc
2023

IEEE Access
doi:10.1109/ACCESS.2023.3277756
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202309158203

Kuvaus

Peer reviewed
Tiivistelmä
<p>In recent years, Machine Learning (ML), especially Deep Learning (DL) approaches, has attracted great attention in medical field. In this study, we proposed a deep learning-based approach in order to automatically diagnose Temporomandibular Disorder (TMD) on Magnetic Resonance (MR) images. 2576 MR images of 200 patients diagnosed with and without TMD were collected. These images were classified as 8 groups. First of all, a basic Convolutional Neural Network (CNN) was used for the problem. After that, 6 different fine-tuned pre-trained convolutional neural network models, Xception, ResNet-101, MobileNetV2, InceptionV3, DenseNet-121 and ConvNeXt were applied on data set. Finally, the accomplishment of Vision Transformer (ViT) in task solving was also discussed. Performances of the approaches were evaluated by metrics such as accuracy rate, precision, sensitivity, F1-score, Negative Predictive Value (NPV), specificity, Area Under Curve (AUC) and kappa coefficient. Grad-CAM results of the best architectures for diagnostic examination were obtained. Intraclass Correlation Coefficients (ICC) value was computed to assess correlation between the models. According to the test results, deep learning-based architectures assessed were found to be successful in the diagnosis of TMD.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20740]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste