Analysis on generalized Clifford algebras
Orelma, H. (2023)
Orelma, H.
2023
Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202309138151
https://urn.fi/URN:NBN:fi:tuni-202309138151
Kuvaus
Peer reviewed
Tiivistelmä
<p>In this article, we study the analysis related to generalized Clifford algebras C<sub>n</sub>(a), where a is a non-zero vector. If {e<sub>1</sub>, . . ., e<sub>n</sub>} is an orthonormal basis, the multiplication is defined by relations (Equation presented) for a<sub>j</sub> = e<sub>j</sub> · a. The case a = 0 corresponds to the classical Clifford algebra. We define the Dirac operator as usual by D = Σ<sub>j</sub> e<sub>j</sub>∂<sub>xj</sub> and define regular functions as its null solution. We first study the algebraic properties of the algebra. Then we prove the basic formulas for the Dirac operator and study the properties of regular functions.</p>
Kokoelmat
- TUNICRIS-julkaisut [20173]