Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Grinding burn classification with surface Barkhausen noise measurements

Santa-aho, Suvi; Vippola, Minnamari; Sorsa, Aki; Ruusunen, Mika (2023-08-01)

 
Avaa tiedosto
Grinding_burn_classification.pdf (525.5Kt)
Lataukset: 



Santa-aho, Suvi
Vippola, Minnamari
Sorsa, Aki
Ruusunen, Mika
01.08.2023

Research and Review Journal of Nondestructive Testing (ReJNDT)
doi:10.58286/28170
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202308227717

Kuvaus

Peer reviewed
Tiivistelmä
Industrial Barkhausen noise (BN) measurements are commonly utilized for final quality control after machining operations such as grinding to point out grinding burns. Grinding burns might compromise the final use and fatigue lifetime of the ground component. The industrial BN method itself is based on a pre-determined threshold value of the BN root-mean-square value (RMS). Elevated RMS values indicate detrimental changes in the component. Usually, the evaluation of grinding burn severity is not carried out. In this study, real ground cylindrical samples were collected that were rejected based on an industrial quality control with a BN unit. A more detailed BN analysis was carried out for<br/>41 individual grinding burn locations followed by X-ray diffraction based residual stress (RS) surface measurements and residual stress and diffraction peak full-width-at-half-maximum (FWHM) depth profiles. K-means clustering was applied to profiles to label the data points related to grinding burns of different severity. Three classes of grinding burns were identified and verified by micrographs and hardness. A linear discriminant classification model was then identified between the surface BN measurement features and labeled data points. The classification results were reasonable with about 80 %<br/>classification accuracy at worst. They showed that the classes identified can be detected with the surface BN measurements. Thus, the approach presented in this paper shows great potential in the practical use of BN measurement where grinding burns can be detected and evaluated with a surface BN measurement.
Kokoelmat
  • TUNICRIS-julkaisut [20683]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste