Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integrating Microfluidic Chips Into Inverted Selective Plane Illumination Microscopy

Nguyen, Truc (2024)

 
Avaa tiedosto
NguyenTruc.pdf (64.70Mt)
Lataukset: 



Nguyen, Truc
2024

Bioteknologian ja biolääketieteen tekniikan maisteriohjelma - Master's Programme in Biotechnology and Biomedical Engineering
Lääketieteen ja terveysteknologian tiedekunta - Faculty of Medicine and Health Technology
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2024-12-10
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-2024111210155
Tiivistelmä
Selective Plane Illumination Microscopy (SPIM) is a novel imaging technology that is particularly useful in studying live biological specimens in three dimensions. By taking advantage of orthogonal excitation and detection systems, and producing a thin light sheet for optical sectioning, SPIM is capable of diminishing photobleaching and photodamage and facilitating long-term imaging of living organisms. Although traditional SPIM configuration requires special sample embedding techniques, inverted SPIM (iSPIM) extends existing benefits while allowing conventional sample preparation, which makes it feasible for imaging microfluidic devices. However, imaging dynamic processes within microfluidic channels remains a challenge, requiring high-quality imaging systems to achieve clear resolution.

This thesis focuses on designing and constructing the sample holder component for a house-built iSPIM system and investigates the system’s capability in imaging simplified microfluidic chips. The microfluidic chips to be tested were fabricated using 3D-printed molds and polydimethylsiloxane (PDMS) with three different top layer materials, namely fluorinated ethylene propylene (FEP), PDMS and glass. Imaging experiments were conducted by embedding microbeads within single-channel microfluidic chips to test the system's performance.

It was demonstrated that the custom-built sample holder was functional, and the iSPIM system was capable of imaging small microfluidic channels, though limitations in the imaging process were identified. Further, the results indicated that imaging quality was significantly affected by the choice of materials for the microfluidic chip's top layer. FEP provided better image quality compared to PDMS and glass, as confirmed by both visual observation and point spread function (PSF) analysis. The lateral and axial full width at half maximum (FWHM) values for FEP and PDMS indicated that FEP allowed for higher resolution imaging.

In conclusion, while the iSPIM validates potential for imaging within microfluidic, challenges remain in the system housing and corresponding custom-designed chip. Overall results indicated that although the house-built iSPIM was capable of imaging the microbeads inside the microchannels, the resolution was not optimal and would require improvement to reach the goal of monitoring live cells and dynamic processes in Organ-on-chip (OoC) devices.
Kokoelmat
  • Opinnäytteet - ylempi korkeakoulututkinto [40800]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste