Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal Control and Modulation for Grid-Connected Power Converters

Hilden, Ilari (2024)

 
Avaa tiedosto
HildenIlari.pdf (4.365Mt)
Lataukset: 



Hilden, Ilari
2024

Automaatiotekniikan DI-ohjelma - Master's Programme in Automation Engineering
Tekniikan ja luonnontieteiden tiedekunta - Faculty of Engineering and Natural Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2024-04-29
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202404254580
Tiivistelmä
Due to the increase in renewable energy sources, grid-connected converters are becoming essential in the power generation sector. Because grid-connected converter systems can exhibit high-order multiple-input multiple-output (MIMO) characteristics, their control can be challenging. Moreover, grid-connected converters need to be operated in such a way that the produced harmonic distortions comply with the relevant grid codes, such as the IEEE 519 standard, while still retaining fast dynamic performance.
A model predictive control (MPC) strategy which utilizes optimized pulse patterns (OPPs) could successfully address all the aforementioned challenges, and thereby, is a well-suited choice. One such strategy---called the gradient-based pulse pattern control (GP3C)---has been shown to be able to fullfill the demanding control objectives to some extent.
This thesis adopts the GP3C algorithm for a two-level low-voltage (LV) converter which is connected to the grid via an LCL filter. In addition, the GP3C algorithm is refined by implementing optimal reference trajectories derived based on the OPPs. Therefore, the optimal harmonic content is accounted for in the output reference trajectories, resulting in excellent steady-state performance, and very low grid current harmonic distortions which fully meet the relevant grid codes.
Due to the rigid nature of OPPs, the available voltage margin can be underutilized during changes in the demanded power. To address this, in this thesis, a pulse insertion strategy is proposed to fully utilize the available hardware during transients. To this end, the nominal OPP is locally overwritten by adding three-phase switch positions in a strategic manner to equip the controller with increased freedom. As a result, the available voltage margin is effectively utilized resulting in increased dynamic performance.
The favorable performance of the proposed control strategy is verified with simulation studies. It is shown, that excellent steady-state performance is achieved which can be partly attributed to the optimal reference trajectories. With the pulse insertion, the proposed control strategy is shown to be able to achieve transients on par with finite control set MPC (FCS-MPC).
Kokoelmat
  • Opinnäytteet - ylempi korkeakoulututkinto [40800]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste