GPAW : An open Python package for electronic structure calculations
Mortensen, Jens Jørgen; Larsen, Ask Hjorth; Kuisma, Mikael; Ivanov, Aleksei V.; Taghizadeh, Alireza; Peterson, Andrew; Haldar, Anubhab; Dohn, Asmus Ougaard; Schäfer, Christian; Jónsson, Elvar Örn; Hermes, Eric D.; Nilsson, Fredrik Andreas; Kastlunger, Georg; Levi, Gianluca; Jónsson, Hannes; Häkkinen, Hannu; Fojt, Jakub; Kangsabanik, Jiban; Sødequist, Joachim; Lehtomäki, Jouko; Heske, Julian; Enkovaara, Jussi; Winther, Kirsten Trøstrup; Dulak, Marcin; Melander, Marko M.; Ovesen, Martin; Louhivuori, Martti; Walter, Michael; Gjerding, Morten; Lopez-Acevedo, Olga; Erhart, Paul; Warmbier, Robert; Würdemann, Rolf; Kaappa, Sami; Latini, Simone; Boland, Tara Maria; Bligaard, Thomas; Skovhus, Thorbjørn; Susi, Toma; Maxson, Tristan; Rossi, Tuomas; Chen, Xi; Schmerwitz, Yorick Leonard A.; Schiøtz, Jakob; Olsen, Thomas; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer (2024-03-07)
Mortensen, Jens Jørgen
Larsen, Ask Hjorth
Kuisma, Mikael
Ivanov, Aleksei V.
Taghizadeh, Alireza
Peterson, Andrew
Haldar, Anubhab
Dohn, Asmus Ougaard
Schäfer, Christian
Jónsson, Elvar Örn
Hermes, Eric D.
Nilsson, Fredrik Andreas
Kastlunger, Georg
Levi, Gianluca
Jónsson, Hannes
Häkkinen, Hannu
Fojt, Jakub
Kangsabanik, Jiban
Sødequist, Joachim
Lehtomäki, Jouko
Heske, Julian
Enkovaara, Jussi
Winther, Kirsten Trøstrup
Dulak, Marcin
Melander, Marko M.
Ovesen, Martin
Louhivuori, Martti
Walter, Michael
Gjerding, Morten
Lopez-Acevedo, Olga
Erhart, Paul
Warmbier, Robert
Würdemann, Rolf
Kaappa, Sami
Latini, Simone
Boland, Tara Maria
Bligaard, Thomas
Skovhus, Thorbjørn
Susi, Toma
Maxson, Tristan
Rossi, Tuomas
Chen, Xi
Schmerwitz, Yorick Leonard A.
Schiøtz, Jakob
Olsen, Thomas
Jacobsen, Karsten Wedel
Thygesen, Kristian Sommer
07.03.2024
092503
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202404043291
https://urn.fi/URN:NBN:fi:tuni-202404043291
Kuvaus
Peer reviewed
Tiivistelmä
We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations, namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually independent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for the implementation of new features and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE), providing a flexible and dynamic user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the Bethe-Salpeter Equation, variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation of the Kohn-Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal point defects, and much more. Recently, support for graphics processing unit (GPU) acceleration has been achieved with minor modifications to the GPAW code thanks to the CuPy library. We end the review with an outlook, describing some future plans for GPAW.
Kokoelmat
- TUNICRIS-julkaisut [19265]