Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Väitöskirjat
  • Näytä viite
  •   Etusivu
  • Trepo
  • Väitöskirjat
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational Analysis of Multilevel High-throughput Data from Cancer Tissue

Afyounian, Ebrahim (2024)

 
Avaa tiedosto
978-952-03-3224-2.pdf (21.01Mt)
978-952-03-3224-2_Errata.pdf (223.5Kt)
Lataukset: 



Afyounian, Ebrahim
Tampere University
2024

Lääketieteen ja biotieteiden tohtoriohjelma - Doctoral Programme in Medicine and Life Sciences
Lääketieteen ja terveysteknologian tiedekunta - Faculty of Medicine and Health Technology
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Väitöspäivä
2024-01-12
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:978-952-03-3224-2
Tiivistelmä
The emergence of high-throughput measurement technologies has greatly expanded the possibilities for detecting and quantifying biomolecules involved in various subcellular and biomolecular processes on a larger scale than previously possible. These measurements, along with their accurate and robust analysis, play a crucial role in deepening our understanding and explaining a wide range of biological phenomena, including the development and progression of cancers. Consequently, this knowledge can be harnessed to develop effective interventions, particularly in the management and treatment of cancer.

Within this dissertation, we have pursued two primary aims. Firstly, we aimed to develop novel computational and statistical tools and methods for the effective and efficient analysis of high-throughput data within the context of cancer. Secondly, using the tools and methods we developed, we sought to investigate single and multilevel high-throughput data to identify key alterations that drive the development and progression of prostate cancer.

To accomplish the first aim, we devised a computational tool capable of detecting somatic copy number alterations. Additionally, we developed other computational and statistical approaches to mitigate the inherent biases present in data obtained from high- throughput sequencing technologies. As for the second aim, using the methods and tools we developed, we analyzed single and multilevel high-throughput data from a cohort of prostate cancer patients at various stages of their disease, identified multiple alterations, and presented our observations in detail.

In summary, our study demonstrates the potential of the analysis of single and multilevel high-throughput data. Through this approach, we were able to replicate previous findings and uncover alterations that impact biological processes at different levels during the development and progression of prostate cancer.
Kokoelmat
  • Väitöskirjat [5026]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste