Toward Vision-based Control of Heavy-Duty and Long-Reach Robotic Manipulators
Mäkinen, Petri (2023)
Mäkinen, Petri
Tampere University
2023
Teknisten tieteiden tohtoriohjelma - Doctoral Programme in Engineering Sciences
Tekniikan ja luonnontieteiden tiedekunta - Faculty of Engineering and Natural Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Väitöspäivä
2023-12-08
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:978-952-03-3146-7
https://urn.fi/URN:ISBN:978-952-03-3146-7
Tiivistelmä
Heavy-duty mobile machines are an important part of the industry, and they are used for various work tasks in mining, construction, forestry, and agriculture. Many of these machines have heavy-duty, long-reach (HDLR) manipulators attached to them, which are used for work tasks such as drilling, lifting, and grabbing. A robotic manipulator, by definition, is a device used for manipulating materials without direct physical contact by a human operator. HDLR manipulators differ from manipulators of conventional industrial robots in the sense that they are subject to much larger kinematic and non-kinematic errors, which hinder the overall accuracy and repeatability of the robot’s tool center point (TCP). Kinematic errors result from modeling inaccuracies, while non-kinematic errors include structural flexibility and bending, thermal effects, backlash, and sensor resolution. Furthermore, conventional six degrees of freedom (DOF) industrial robots are more general-purpose systems, whereas HDLR manipulators are mostly designed for special (or single) purposes.
HDLR manipulators are typically built as lightweight as possible while being able to handle significant load masses. Consequently, they have long reaches and high payload-to-own-weight ratios, which contribute to the increased errors compared to conventional industrial robots. For example, a joint angle measurement error of 0.5◦ associated with a 5-m-long rigid link results in an error of approximately 4.4 cm at the end of the link, with further errors resulting from flexibility and other non-kinematic aspects. The target TCP positioning accuracy for HDLR manipulators is in the sub-centimeter range, which is very difficult to achieve in practical systems. These challenges have somewhat delayed the automation of HDLR manipulators, while conventional industrial robots have long been commercially available. This is also attributed to the fact that machines with HDLR manipulators have much lower production volumes, and the work tasks are more non-repetitive in nature compared to conventional industrial robots in factories.
Sensors are a key requirement in order to achieve automated operations and eventually full autonomy. For example, humans mostly rely on their visual perception in work tasks, while the collected information is processed in the brain. Much like humans, autonomous machines also require both sensing and intelligent processing of the collected sensor data. This dissertation investigates new visual sensing solutions for HDLR manipulators, which are striving toward increased automation levels in various work tasks. The focus is on visual perception and generic 6 DOF TCP pose estimation of HDLR manipulators in unknown (or unstructured) environments. Methods for increasing the robustness and reliability of visual perception systems are examined by exploiting sensor redundancy and data fusion. Vision-aided control using targetless, motion-based local calibration between an HDLR manipulator and a visual sensor is also proposed to improve the absolute positioning accuracy of the TCP despite the kinematic and non-kinematic errors present in the system. It is experimentally shown that a sub-centimeter TCP positioning accuracy was reliably achieved in the tested cases using a developed trajectory-matching-based method.
Overall, this compendium thesis includes four publications and one unpublished manuscript related to these topics. Two main research problems, inspired by the industry, are considered and investigated in the presented publications. The outcome of this thesis provides insight into possible applications and benefits of advanced visual perception systems for HDLR manipulators in dynamic, unstructured environments. The main contribution is related to achieving sub-centimeter TCP positioning accuracy for an HDLR manipulator using a low-cost camera. The numerous challenges and complexities related to HDLR manipulators and visual sensing are also highlighted and discussed.
HDLR manipulators are typically built as lightweight as possible while being able to handle significant load masses. Consequently, they have long reaches and high payload-to-own-weight ratios, which contribute to the increased errors compared to conventional industrial robots. For example, a joint angle measurement error of 0.5◦ associated with a 5-m-long rigid link results in an error of approximately 4.4 cm at the end of the link, with further errors resulting from flexibility and other non-kinematic aspects. The target TCP positioning accuracy for HDLR manipulators is in the sub-centimeter range, which is very difficult to achieve in practical systems. These challenges have somewhat delayed the automation of HDLR manipulators, while conventional industrial robots have long been commercially available. This is also attributed to the fact that machines with HDLR manipulators have much lower production volumes, and the work tasks are more non-repetitive in nature compared to conventional industrial robots in factories.
Sensors are a key requirement in order to achieve automated operations and eventually full autonomy. For example, humans mostly rely on their visual perception in work tasks, while the collected information is processed in the brain. Much like humans, autonomous machines also require both sensing and intelligent processing of the collected sensor data. This dissertation investigates new visual sensing solutions for HDLR manipulators, which are striving toward increased automation levels in various work tasks. The focus is on visual perception and generic 6 DOF TCP pose estimation of HDLR manipulators in unknown (or unstructured) environments. Methods for increasing the robustness and reliability of visual perception systems are examined by exploiting sensor redundancy and data fusion. Vision-aided control using targetless, motion-based local calibration between an HDLR manipulator and a visual sensor is also proposed to improve the absolute positioning accuracy of the TCP despite the kinematic and non-kinematic errors present in the system. It is experimentally shown that a sub-centimeter TCP positioning accuracy was reliably achieved in the tested cases using a developed trajectory-matching-based method.
Overall, this compendium thesis includes four publications and one unpublished manuscript related to these topics. Two main research problems, inspired by the industry, are considered and investigated in the presented publications. The outcome of this thesis provides insight into possible applications and benefits of advanced visual perception systems for HDLR manipulators in dynamic, unstructured environments. The main contribution is related to achieving sub-centimeter TCP positioning accuracy for an HDLR manipulator using a low-cost camera. The numerous challenges and complexities related to HDLR manipulators and visual sensing are also highlighted and discussed.
Kokoelmat
- Väitöskirjat [4848]