Group Recommendations with Responsibility Constraints
Stratigi, Maria (2023)
Stratigi, Maria
Tampere University
2023
Informaation ja järjestelmien tohtoriohjelma - Doctoral Programme in Information and Systems
Informaatioteknologian ja viestinnän tiedekunta - Faculty of Information Technology and Communication Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Väitöspäivä
2023-09-11
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:978-952-03-3024-8
https://urn.fi/URN:ISBN:978-952-03-3024-8
Tiivistelmä
Sosiaalisen median laajeneminen on johtanut siihen, että yhä useammin ihmiset muodostavat ryhmiä erilaisia aktiviteetteja varten, ja peräkkäisiä ryhmäsuositteluja tuottavat järjestelmät ovat nousseet suosituksi tutkimusalueeksi. Ryhmälle tehtävät suositukset ovat huomattavasti monimutkaisempia kuin yksittäiset suositukset, koska suosittelujärjestelmät joutuvat vastaamaan kaikkien ryhmän jäsenten usein ristiriitaisten etujen tasapainottamisesta. Ottaen huomioon suositusten vaikutus käyttäjien kokemaan järjestelmän suorituskykyyn (esim. elokuvasuositukset) ja suositustehtävien usein varsin arkaluontoinen luonne (esim. sähköisen terveydenhuollon suositukset), suositusten luomisprosessia tulee harkita huolellisesti. Näistä seikoista johtuen on tullut entistä tarpeellisemmaksi kehittää erilaisia vastuullisuusrajoitteita noudattavia suosituksia. Tällaisia vastuullisuusrajoitteita ovat muun muassa reiluus eli puolueettomuus, ja läpinäkyvyys , joka helpottaa järjestelmän prosessien ymmärtämistä.
Jos näitä rajoituksia noudatetaan, niin ryhmäsuosittelijoista tulee monimutkaisempia. On edelleen haastavampaa, jos suosittelijat käsittelevät suositusten jonoa sen sijaan, että jokainen suositus käsitellään erillään muista. Intuitiivisesti järjestelmän tulee ottaa huomioon itsensä ja ryhmän välisen vuorovaikutuksen historia ja mukauttaa suosituksiaan aikaisempien suositusten vaikutuksen mukaisesti. Tämä havainto johtaa uuden suositusjärjestelmätyypin, peräkkäisten ryhmäsuositusjärjestelmien , syntymiseen. Tavalliset ryhmäsuositusmenetelmät ovat tehottomia, kun niitä käytetään peräkkäisessä skenaariossa. Ne tuottavat usein suosituksia, joita ei ole edes tarkoitettu reiluksi kaikkia ryhmän jäseniä kohtaan, eli kaikki ryhmän jäsenet eivät ole yhtä tyytyväisiä suosituksiin. Käytännössä, kun jokaista suositusprosessia tarkastellaan erikseen, aina löytyy vähiten tyytyväinen jäsen. Vähiten tyytyväisimmän jäsenen ei kuitenkaan pitäisi aina olla sama, kun järjestelmän käyttö kattaa useamman kuin yhden suosituskierroksen. Tämä johtaisi oikeudenmukaisuuden rajoitteen rikkomiseen, koska järjestelmä olisi puolueellinen yhtä ryhmän jäsentä vastaan.
Suositusjärjestelmien monimutkaisuuden vuoksi käyttäjät eivät ehkä pysty ymmärtämään ehdotuksen perusteluja. Tämän torjumiseksi monet järjestelmät tarjoavat selityksiä ja suosituksia avoimuusrajoituksen mukaisesti. Keskustelu siitä, miksi kohdetta ei ehdoteta, on arvokasta erityisesti järjestelmänvalvojille. Selitykset tällaisiin kyselyihin ovat heille korvaamatonta palautetta, kun he ovat kalibroimassa tai korjaamassa järjestelmäänsä. Kaiken kaikkiaan tämän opinnäytetyön tavoitteena on vastata seuraaviin tutkimuskysymyksiin (RQ). RQ1. Kuinka määritellä peräkkäiset ryhmäsuositukset ja miksi niitä tarvitaan? Kuinka suunnitella ryhmäsuositusmenetelmiä niiden pohjalta? Tässä opinnäytetyössä määritellään formaalisti peräkkäinen ryhmäsuositusjärjestelmä ja mitä tavoitteita sen tulee noudattaa. Lisäksi ehdotetaan kolmea uutta ryhmäsuositusmenetelmää oikeudenmukaisten peräkkäisten ryhmäsuositusten tuottamiseksi.
RQ2. Kuinka hyödyntää vahvistusoppimista ryhmäsuositusmenetelmän valinnassa, kun järjestelmän ympäristö muuttuu jokaisen suosituskierroksen jälkeen? RQ1:n laajennuksessa tässä opinnäytetyössä ehdotetaan vahvistukseen perustuvaa mallia, joka valitsee sopivimman ryhmäsuositusmenetelmän käytettäväksi koko sarjassa, samalla pyrkien reiluuteen.
RQ3. Kuinka suunnitella kysymyksiä ja tuottaa selityksiä sille, miksi jokin joukko ei näkynyt suosituslistalla tai tietyssä paikassa? Tässä väitöskirjassa määritellään miksi-ei- kysymys ja esitetään näiden kysymysten rakenne. Lisäksi työssä ehdotetaan mallia, jolla luodaan selityksiä näihin miksi-ei-kysymyksiin.
RQ4. Kuinka sisällyttää erilaisia terveyteen liittyviä näkökohtia ryhmäsuosituksiin? Näissä on tärkeää antaa oikeudenmukaisia suosituksia, koska terveyssuositukset ovat erittäin arkaluontoisia. Mahdollisimman oikeudenmukaisen suosituksen tuottamiseksi tässä opinnäytetyössä ehdotetaan mallia, joka sisältää erilaisia terveysnäkökohtia.
Jos näitä rajoituksia noudatetaan, niin ryhmäsuosittelijoista tulee monimutkaisempia. On edelleen haastavampaa, jos suosittelijat käsittelevät suositusten jonoa sen sijaan, että jokainen suositus käsitellään erillään muista. Intuitiivisesti järjestelmän tulee ottaa huomioon itsensä ja ryhmän välisen vuorovaikutuksen historia ja mukauttaa suosituksiaan aikaisempien suositusten vaikutuksen mukaisesti. Tämä havainto johtaa uuden suositusjärjestelmätyypin, peräkkäisten ryhmäsuositusjärjestelmien , syntymiseen. Tavalliset ryhmäsuositusmenetelmät ovat tehottomia, kun niitä käytetään peräkkäisessä skenaariossa. Ne tuottavat usein suosituksia, joita ei ole edes tarkoitettu reiluksi kaikkia ryhmän jäseniä kohtaan, eli kaikki ryhmän jäsenet eivät ole yhtä tyytyväisiä suosituksiin. Käytännössä, kun jokaista suositusprosessia tarkastellaan erikseen, aina löytyy vähiten tyytyväinen jäsen. Vähiten tyytyväisimmän jäsenen ei kuitenkaan pitäisi aina olla sama, kun järjestelmän käyttö kattaa useamman kuin yhden suosituskierroksen. Tämä johtaisi oikeudenmukaisuuden rajoitteen rikkomiseen, koska järjestelmä olisi puolueellinen yhtä ryhmän jäsentä vastaan.
Suositusjärjestelmien monimutkaisuuden vuoksi käyttäjät eivät ehkä pysty ymmärtämään ehdotuksen perusteluja. Tämän torjumiseksi monet järjestelmät tarjoavat selityksiä ja suosituksia avoimuusrajoituksen mukaisesti. Keskustelu siitä, miksi kohdetta ei ehdoteta, on arvokasta erityisesti järjestelmänvalvojille. Selitykset tällaisiin kyselyihin ovat heille korvaamatonta palautetta, kun he ovat kalibroimassa tai korjaamassa järjestelmäänsä. Kaiken kaikkiaan tämän opinnäytetyön tavoitteena on vastata seuraaviin tutkimuskysymyksiin (RQ). RQ1. Kuinka määritellä peräkkäiset ryhmäsuositukset ja miksi niitä tarvitaan? Kuinka suunnitella ryhmäsuositusmenetelmiä niiden pohjalta? Tässä opinnäytetyössä määritellään formaalisti peräkkäinen ryhmäsuositusjärjestelmä ja mitä tavoitteita sen tulee noudattaa. Lisäksi ehdotetaan kolmea uutta ryhmäsuositusmenetelmää oikeudenmukaisten peräkkäisten ryhmäsuositusten tuottamiseksi.
RQ2. Kuinka hyödyntää vahvistusoppimista ryhmäsuositusmenetelmän valinnassa, kun järjestelmän ympäristö muuttuu jokaisen suosituskierroksen jälkeen? RQ1:n laajennuksessa tässä opinnäytetyössä ehdotetaan vahvistukseen perustuvaa mallia, joka valitsee sopivimman ryhmäsuositusmenetelmän käytettäväksi koko sarjassa, samalla pyrkien reiluuteen.
RQ3. Kuinka suunnitella kysymyksiä ja tuottaa selityksiä sille, miksi jokin joukko ei näkynyt suosituslistalla tai tietyssä paikassa? Tässä väitöskirjassa määritellään miksi-ei- kysymys ja esitetään näiden kysymysten rakenne. Lisäksi työssä ehdotetaan mallia, jolla luodaan selityksiä näihin miksi-ei-kysymyksiin.
RQ4. Kuinka sisällyttää erilaisia terveyteen liittyviä näkökohtia ryhmäsuosituksiin? Näissä on tärkeää antaa oikeudenmukaisia suosituksia, koska terveyssuositukset ovat erittäin arkaluontoisia. Mahdollisimman oikeudenmukaisen suosituksen tuottamiseksi tässä opinnäytetyössä ehdotetaan mallia, joka sisältää erilaisia terveysnäkökohtia.
Kokoelmat
- Väitöskirjat [4943]