Strategies for Red-Light Photoswitching
Kuntze, Kim (2023)
Kuntze, Kim
Tampere University
2023
Tekniikan ja luonnontieteiden tohtoriohjelma - Doctoral Programme in Engineering and Natural Sciences
Tekniikan ja luonnontieteiden tiedekunta - Faculty of Engineering and Natural Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Väitöspäivä
2023-09-01
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:978-952-03-3000-2
https://urn.fi/URN:ISBN:978-952-03-3000-2
Tiivistelmä
Vuorovaikutteiset, muotoutuvat ja jopa älykkäät molekyylirakenteet ovat avain uuden sukupolven lääkeaineisiin ja toiminnallisiin materiaaleihin. Valokytkimet eli yhdisteet, jotka isomeroituvat reversiibelisti valon vaikutuksesta johtaen makroskooppisten ominaisuuksien muutoksiin, ovat erottamaton osa tätä tulevaisuutta. Mahdolliset sovelluskohteet ulottuvat lääketieteestä elektroniikkaan ja robotiikkaan. Valitettavasti useimmat valokytkinrakenteet, esimerkiksi laajalti käytetyt atsobentseenit, absorboivat ultraviolettivaloa, joka on vahingollista monille materiaaleille ja erityisesti eläville soluille. Jotta valokytkinten koko potentiaali voidaan hyödyntää, tarvitaan harmittomalla näkyvällä valolla toimivia yhdisteitä. Puna- tai infrapunavalo olisi ihanteellinen ärsyke biologian alalla käytettäville kytkimille. Sama pätee myös molekyylimoottoreihin eli yhdisteisiin, jotka pyörivät valon vaikutuksesta yksisuuntaisesti. Lisäksi sekä kytkinten että moottorien tulisi isomerisoitua valon vaikutuksesta tehokkaasti ja nopeasti, termisten isomerisaatioreaktioiden tulisi olla sovelluskohteesta riippuen hitaita tai nopeita ja yhdisteiden tulisi toimia hyvin erilaisissa ympäristöissä. Näiden ominaisuuksien hallitsemiseksi on tärkeää ymmärtää niiden taustalla olevat mekanismit.
Tässä väitöskirjassa tutkimme kolmea keinoa toteuttaa valokytkentä punaisella valolla: (i) atsobentseenien absorptiospektrin siirtäminen rakennetta muokkaamalla, (ii) uusien, valmiiksi punaista valoa absorboivien rakenteiden hyödyntäminen ja (iii) epäsuora valokytkentä punavalolla aktivoitavia katalyyttejä hyödyntäen. Tarkastelemme strategioita teoreettiselta kannalta ja osoitamme, että niistä jokainen mahdollistaa valokytkennän punaista valoa käyttäen. Kullakin strategialla on etunsa ja haasteensa tehokkaan, nopean ja kestävän valokytkennän toteuttamiseksi. Tästä johtuen yksi ihanteellinen valokytkinmalli ei voi saavuttaa kaikkia eri sovelluksille asetettuja tavoitteita, vaan tulevaisuuden haaste on löytää kuhunkin käyttöön paras ratkaisu. Samoja periaatteita voidaan soveltaa myös molekyylimoottoreihin, jolloin molekulaarisen tason yksisuuntainen kiertoliike voidaan saada aikaan näkyvällä valolla. Lisäksi punaisella valolla toimivien valokytkinten rakenteita hyödyntämällä moottorien rotaatiota saadaan tehostettua.
Tässä väitöskirjassa tutkimme kolmea keinoa toteuttaa valokytkentä punaisella valolla: (i) atsobentseenien absorptiospektrin siirtäminen rakennetta muokkaamalla, (ii) uusien, valmiiksi punaista valoa absorboivien rakenteiden hyödyntäminen ja (iii) epäsuora valokytkentä punavalolla aktivoitavia katalyyttejä hyödyntäen. Tarkastelemme strategioita teoreettiselta kannalta ja osoitamme, että niistä jokainen mahdollistaa valokytkennän punaista valoa käyttäen. Kullakin strategialla on etunsa ja haasteensa tehokkaan, nopean ja kestävän valokytkennän toteuttamiseksi. Tästä johtuen yksi ihanteellinen valokytkinmalli ei voi saavuttaa kaikkia eri sovelluksille asetettuja tavoitteita, vaan tulevaisuuden haaste on löytää kuhunkin käyttöön paras ratkaisu. Samoja periaatteita voidaan soveltaa myös molekyylimoottoreihin, jolloin molekulaarisen tason yksisuuntainen kiertoliike voidaan saada aikaan näkyvällä valolla. Lisäksi punaisella valolla toimivien valokytkinten rakenteita hyödyntämällä moottorien rotaatiota saadaan tehostettua.
Kokoelmat
- Väitöskirjat [4850]