Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Causal coupling inference from multivariate time series based on ordinal partition transition networks

Subramaniyam, Narayan Puthanmadam; Donner, Reik V.; Caron, Davide; Panuccio, Gabriella; Hyttinen, Jari (2021)

 
Avaa tiedosto
Subramaniyam2021_Article_CausalCouplingInferenceFromMul.pdf (7.029Mt)
Lataukset: 



Subramaniyam, Narayan Puthanmadam
Donner, Reik V.
Caron, Davide
Panuccio, Gabriella
Hyttinen, Jari
2021


doi:10.1007/s11071-021-06610-0
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202107096271

Kuvaus

Peer reviewed
Tiivistelmä
Identifying causal relationships is a challenging yet crucial problem in many fields of science like epidemiology, climatology, ecology, genomics, economics and neuroscience, to mention only a few. Recent studies have demonstrated that ordinal partition transition networks (OPTNs) allow inferring the coupling direction between two dynamical systems. In this work, we generalize this concept to the study of the interactions among multiple dynamical systems and we propose a new method to detect causality in multivariate observational data. By applying this method to numerical simulations of coupled linear stochastic processes as well as two examples of interacting nonlinear dynamical systems (coupled Lorenz systems and a network of neural mass models), we demonstrate that our approach can reliably identify the direction of interactions and the associated coupling delays. Finally, we study real-world observational microelectrode array electrophysiology data from rodent brain slices to identify the causal coupling structures underlying epileptiform activity. Our results, both from simulations and real-world data, suggest that OPTNs can provide a complementary and robust approach to infer causal effect networks from multivariate observational data.
Kokoelmat
  • TUNICRIS-julkaisut [12692]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste