Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto (Limited access)
  • Näytä viite
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto (Limited access)
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

An integrative method to quantitatively detect nocturnal motor seizures

Ojanen, Petri (2020)

 
Avaa tiedosto
OjanenPetri.pdf (633.2Kt)
Lataukset: 

Tekijä ei ole antanut lupaa avoimeen julkaisuun, aineisto on luettavissa vain Tampereen yliopiston kirjastojen opinnäytepisteillä. The author has not given permission to publish the thesis online. The thesis can be read at the thesis point at Tampere University Library.

Ojanen, Petri
2020

Lääketieteen lisensiaatin tutkinto-ohjelma - Licentiate's Programme in Medicine
Lääketieteen ja terveysteknologian tiedekunta - Faculty of Medicine and Health Technology
This publication is copyrighted. Only for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2020-12-30
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202012299196
Tiivistelmä
In this proof-of-concept investigation, we demonstrate a marker-free video-based method to detect nocturnal motor seizures across a spectrum of motor seizure types, in a nighttime setting with a single adult female with refractory epilepsy. In doing so, we further explore the intermediate biosignals, visually mapping seizure “fingerprints” to seizure types. The method is designed to be flexible enough to generalize to unseen data, and shows promising performance characteristics for low-cost seizure detection and classification. The dataset contained recordings from 27 recorded nights. Seizure events were observed in 22 of these nights, with 36 unequivocally confirmed seizures. Each seizure was classified by an expert epileptologist according to both the ILAE 2017 standard and the Lüders semiological classification guidelines, yielding 5 of the ILAE-recognized seizure types and 7 distinct seizure semiologies. Evaluation was based on inference of motion, oscillation, and sound signals extracted from the recordings. The model architecture consisted of two feature extraction and event determination layers and one thresholding layer, establishing a simple framework for multimodal seizure analysis. Training of the optimal parameters for was done by randomly resampling the event hits for each signal, and choosing a threshold that kept an expected 90% sensitivity for the sample distribution. With the cut-off values selected, statistical performance was calculated for two target seizure groups: those containing a clonic component, and those containing a tonic component. When tuned to 90% sensitivity, the system achieved a very low false discovery rate of 0.038/hour when targeting seizures with a clonic component, and a clinically-relevant rate of 1.02/hour when targeting seizures with a tonic component. These results indicate a sensitive method for detecting various nocturnal motor seizure types, and a high potential to differentiate motor seizures based on their video and audio signal characteristics. Paired with the low cost of this technique, both cost savings and improved quality of care might be achieved through further development and commercialization of this method.
Kokoelmat
  • Opinnäytteet - ylempi korkeakoulututkinto (Limited access) [3606]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste