Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Väitöskirjat
  • Näytä viite
  •   Etusivu
  • Trepo
  • Väitöskirjat
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Wireless Optogenetics Nanonetworking Device (WiOptND): Opto-acoustic Brain Machine Interface

Wirdatmadja, Stefanus (2020)

 
Avaa tiedosto
978-952-03-1728-7.pdf (28.30Mt)
Lataukset: 



Wirdatmadja, Stefanus
Tampere University
2020

Tieto- ja sähkötekniikan tohtoriohjelma - Doctoral Programme in Computing and Electrical Engineering
Informaatioteknologian ja viestinnän tiedekunta - Faculty of Information Technology and Communication Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Väitöspäivä
2020-11-05
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:978-952-03-1728-7
Tiivistelmä
More than 50 million people worldwide suffer from epilepsy and around 6.3 million have Parkinson’s disease (PD). These are two examples of the many neurological disorders. Depending on the severity, one available solution is deep brain stimulation (DBS). DBS is a method to send electrical impulses to the desired region of the brain by using an electrode implant to regulate abnormal impulses. Another stimulation method, known as optogenetics, uses optical stimulation. This method is already popular in experiments on mice and non-human primates, but not in humans. Considering the recent research and development in optogenetics, its implementation in humans could be another solution for neurological treatment.

The objective of this thesis was to develop a wireless fully implantable brain machine interface (BMI) which can be applied to both animals and humans. In this thesis, we propose the concept of the Wireless Nanonetworking Device (WiOptND), which is batteryless and small in size. We found that this device is feasible to be implemented with existing technology by considering optogenetic specifications and light intensity requirements. Furthermore, we propose a system charging protocol that can be integrated into this device. We found that by employing a suitable charging protocol, the efficiency and the effectiveness of the device can be maximised. Moreover, it can support spatially distributed stimulation, where multiple devices can support synchronous neuronal stimulation. In addition to that, we investigated light propagation behaviour in neuronal tissue. Interestingly, the light exhibited focusing effect for spherical and pyramidal-shaped neurons.

In summary, all the results of this thesis contribute to the development of wireless BMI. This development opens up more opportunities for both laboratory observations, such as freely moving experimental subjects, and clinical implementations, such as daily neurological treatments.
Kokoelmat
  • Väitöskirjat [5013]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste