Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparing clustering methods for mobile network root cause detection

Foucault, Thomas Etienne (2020)

 
Avaa tiedosto
FoucaultThomas.pdf (1.806Mt)
Lataukset: 



Foucault, Thomas Etienne
2020

Degree Programme in Information Technology, MSc (Tech)
Informaatioteknologian ja viestinnän tiedekunta - Faculty of Information Technology and Communication Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2020-05-22
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202004294345
Tiivistelmä
Mobile networks represent a considerable industry globally and are known to rely on robust and highly reliable systems. As a consequence, faults in the system may induce a significant loss of credibility and revenues for mobile operators. However, while mobile network systems implement more features, they also become more complex and difficult to troubleshoot. In response to this issue, this thesis explores the capabilities of cluster analysis methods in order to facilitate the tasks of troubleshooting experts and reduce the cost of mobile networks maintenance.

A comparison of eight different clustering methods is proposed. Each of them is a combination of a dimensionality reduction algorithm (Principal Component Analysis or Self-Organizing Maps) and a clustering algorithm (K-means, OPTICS, or Growing Neural Gas with Post-Pruning), with two exceptions which do not use dimensionality reduction.

The results show that OPTICS performs poorly for this task most of the time. However, K-means and Growing Neural Gas with Post-Pruning demonstrate interesting capabilities for detecting several mobile network faults. Both methods present advantages and disadvantages.
Kokoelmat
  • Opinnäytteet - ylempi korkeakoulututkinto [36035]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste