IF-level signal-processing of GPS and Galileo Radionavigation signals using MATLAB/Simulink®: Including Effects of Interference and Multipath
Touman, Ibrahim (2020)
Touman, Ibrahim
2020
Sähkötekniikan DI-ohjelma - Degree Programme in Electrical Engineering
Tekniikan ja luonnontieteiden tiedekunta - Faculty of Engineering and Natural Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2020-01-22
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-201912317148
https://urn.fi/URN:NBN:fi:tuni-201912317148
Tiivistelmä
Open-source GNSS simulator models are rare and somewhat difficult to find. Therefore, Laboratory of Electronics and Communications Engineering in the former Tampere University of Technology (and now Tampere University, Hervanta Campus) has took it upon itself to develop, from time to time, a free and open-source simulator model based on MATLAB/Simulink® for signal processing of a carefully selected set of GNSS radionavigation signals, namely, Galileo E1, Galileo E5, GPS L1, and GPS L5. This M.Sc. thesis is the culmination of those years which have been spent intermittently on research and development of that simulator model. The first half of this M.Sc. thesis is a literature review of some topics which are believed to be of relevance to the thesis’s second half which is in turn more closely associated with documenting the simulator model in question. In particular, the literature review part presents the reader with a plethora of GNSS topics ranging from history of GNSS technology to characteristics of existing radionavigation signals and, last but not least, compatibility and interoperability issues among existing GNSS constellations. While referring to the GNSS theory whenever necessary, the second half is, however, mainly focused on describing the inner-workings of the simulator model from the standpoint of software implementations. Finally, the second half, and thereby the thesis, is concluded with a presentation of various statistical results concerning signal acquisition’s probabilities of detection and false-alarm, in addition to signal tracking’s RMSE.