Effects of 3D Deployments on Interference and SINR in 5G New Radio Systems
Kovalchukov, Roman (2020)
Kovalchukov, Roman
2020
Tietotekniikan DI-ohjelma - Degree Programme in Information Technology
Informaatioteknologian ja viestinnän tiedekunta - Faculty of Information Technology and Communication Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2020-01-03
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-201912207089
https://urn.fi/URN:NBN:fi:tuni-201912207089
Tiivistelmä
Lately, the extremely high frequency (EHF) band has become one of the factors enabling fifth-generation (5G) mobile cellular technologies. By offering large bandwidth, New Radio (NR) systems operating in the lower part of EHF band, called millimeter waves (mmWave), may satisfy the extreme requirements of future 5G networks in terms of both data transfer rate and latency at the air interface.
The use of highly directional antennas in prospective mmWave-based NR communications systems raises an important question: are conventional two-dimensional (2D) cellular network modeling techniques suitable for 5G NR systems? To address this question, we introduced a novel, three-dimensional framework for evaluating the performance of emerging mmWave band wireless networks. The proposed framework explicitly takes into account the blockage effects of propagating mmWave radiation, the vertical and planar directivities at transceiver antennas, and the randomness of user equipment (UE), base station (BS), and blocker heights. The model allows for different levels of accuracy, encompassing a number of models with different levels of computational complexity as special cases. Although the main metric of interest in this thesis is the signal-to-interference-plus-noise ratio (SINR), the model can be extended to obtain the Shannon rate of the channel under investigation.
The proposed model was numerically evaluated in different deployment cases and communication scenarios with a wide range of system parameters. We found that randomness of UE and BS heights and vertical directionality of the mmWave antennas are essential for accurate evaluation of system performance. We also showed that the results of traditional 2D models are too optimistic and greatly overestimate the actual SINR. In contrast, fixed-height models that ignore the impact of height on the probability of exposure to interference are too pessimistic. Furthermore, we evaluated the models that provide the best trade-off between computational complexity and accuracy in specific scenarios and provided recommendations regarding their use for practical assessment of mmWave-based NR systems.
The use of highly directional antennas in prospective mmWave-based NR communications systems raises an important question: are conventional two-dimensional (2D) cellular network modeling techniques suitable for 5G NR systems? To address this question, we introduced a novel, three-dimensional framework for evaluating the performance of emerging mmWave band wireless networks. The proposed framework explicitly takes into account the blockage effects of propagating mmWave radiation, the vertical and planar directivities at transceiver antennas, and the randomness of user equipment (UE), base station (BS), and blocker heights. The model allows for different levels of accuracy, encompassing a number of models with different levels of computational complexity as special cases. Although the main metric of interest in this thesis is the signal-to-interference-plus-noise ratio (SINR), the model can be extended to obtain the Shannon rate of the channel under investigation.
The proposed model was numerically evaluated in different deployment cases and communication scenarios with a wide range of system parameters. We found that randomness of UE and BS heights and vertical directionality of the mmWave antennas are essential for accurate evaluation of system performance. We also showed that the results of traditional 2D models are too optimistic and greatly overestimate the actual SINR. In contrast, fixed-height models that ignore the impact of height on the probability of exposure to interference are too pessimistic. Furthermore, we evaluated the models that provide the best trade-off between computational complexity and accuracy in specific scenarios and provided recommendations regarding their use for practical assessment of mmWave-based NR systems.