Evaluation of Arrowhead Framework in Condition Monitoring Application
Hoikka, Henrikki (2019)
Hoikka, Henrikki
2019
Automaatiotekniikan DI-ohjelma - Degree Programme in Automation Engineering
Tekniikan ja luonnontieteiden tiedekunta - Faculty of Engineering and Natural Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2019-12-04
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-201912026498
https://urn.fi/URN:NBN:fi:tuni-201912026498
Tiivistelmä
The technological advancement in the field of electronics and information technology is changing how industrial automation systems are built. This phenomenon is commonly referred to as the fourth industrial revolution. However, before this prophecy on the change can manifest, new architectural solutions are needed to fully leverage the abilities brought by cheaper sensors, more advanced communication technology and more powerful processing units.
The Arrowhead Framework tries to tackle this problem by providing means for Service-oriented architecture via System-of-Systems approach, where so-called application systems consume services provided by so-called core systems, which provide means for service discovery, service registration and service authorization.
The goal of the thesis was to evaluate The Arrowhead Framework by developing a demo application on the edge-cloud setup used in the condition monitoring system of vibrating screens manufactured by Metso. The demo applications objective was to ease the configuration and installation of industrial Linux PC’s at the edge of the network.
The methodological model for the evaluation was based on the design science research process (DSRP), which provides a model for research of IT artefacts. As a result, the Arrowhead Framework’s core features were found helpful in the problem domain, and suitable for small-scale test setup. However, the implementation of the framework was found to be low quality and lacking features from a production-ready software artefact. The found shortcomings were reported as feedback for the ongoing development process of the framework.
The Arrowhead Framework tries to tackle this problem by providing means for Service-oriented architecture via System-of-Systems approach, where so-called application systems consume services provided by so-called core systems, which provide means for service discovery, service registration and service authorization.
The goal of the thesis was to evaluate The Arrowhead Framework by developing a demo application on the edge-cloud setup used in the condition monitoring system of vibrating screens manufactured by Metso. The demo applications objective was to ease the configuration and installation of industrial Linux PC’s at the edge of the network.
The methodological model for the evaluation was based on the design science research process (DSRP), which provides a model for research of IT artefacts. As a result, the Arrowhead Framework’s core features were found helpful in the problem domain, and suitable for small-scale test setup. However, the implementation of the framework was found to be low quality and lacking features from a production-ready software artefact. The found shortcomings were reported as feedback for the ongoing development process of the framework.