Alternative Electrode Materials for Prototyping Cell Model-Specific Microelectrode Arrays
Ryynänen, Tomi (2019)
Ryynänen, Tomi
Tampere University
2019
Biolääketieteen tekniikan tohtoriohjelma - Doctoral Programme in Biomedical Sciences and Engineering
Lääketieteen ja terveysteknologian tiedekunta - Faculty of Medicine and Health Technology
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Väitöspäivä
2019-11-08
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:978-952-03-1231-2
https://urn.fi/URN:ISBN:978-952-03-1231-2
Tiivistelmä
Mikroelektrodimatriisi (MEA, microelectrode array) on biologien käyttämä väline solujen sähköisen toiminnan mittaamiseen in vitro olosuhteissa. Pelkkien satunnaisten soluryppäiden ja yksikerroksisten soluviljelmien tutkimisen rinnalla yleistymässä ovat biologiset tutkimuskysymykset, joissa tutkitaan ohjatusti muodostettuja soluverkkoja tai yksittäisiä soluja. Nämä aiheet asettavat sellaisia erityisvaatimuksia elektrodien koolle ja sijainnille MEA-levyllä, sekä ylipäätään MEA-levyn suorituskyvylle, että kaupasta saatavat vakiomalliset MEA-levyt eivät yleensä niitä täytä. Räätälöidyille MEA-levyille onkin tarvetta monella sovellusalueella perussolubiologiasta ja tautimallien kehittämisestä myrkyllisyystutkimuksiin ja lääketestaukseen. Tässä väitöstyössä on valmistettu mikroelektrodeja, joiden materiaalina on käytetty titaania, atomikerroskasvatettua (atomic layer deposition, ALD) iridiumoksidia (IrOx) sekä ionisuihkuavusteiselle elektronisuihkuhöyrystyksellä (ion beam assisten e-beam deposition, IBAD) tuotettua titaaninitridiä (TiN). Elektrodit on karakterisoitu mm. niiden impedanssin, kohinatason ja pinnan morfologian osalta. Lisäksi bioyhteensopivuus ja toimivuus on varmistettu kokeilla, joissa on käytetty ihmisperäisistä kantasoluista johdettuja hermo- ja sydänsoluja. Näiden tutkimusten tarkoituksena on tarjota MEA-valmistukseen lisää vaihtoehtoja, mistä valita eri sovelluksiin parhaiten sopivat ja käytettävissä olevat resurssit parhaiten huomioivat elektrodimateriaalit.
Titaanin käyttöä puhtaasti metallimuodossa on mikroelektrodimateriaalina yleisesti vältetty sen johtavuusominaisuuksia häiritsevän hapettumistaipumuksen vuoksi. Valmistukseen kuluva aika ja kustannukset voivat kuitenkin olla räätälöityjen MEA-prototyyppien kehittämisessä olennaisempia tekijöitä kuin prototyypin huippuunsa viritetty suorituskyky, jota usein arvioidaan 1 kHz taajuudella mitatun impedanssin avulla. Kuten odotettua, titaanielektrodien impedanssi oli huomattavan korkea (>1700 kΩ), mutta silti solumittauksissa sekä hermo- että sydänsolujen tuottamat kenttäpotentiaalisignaalit olivat erotettavissa kohinasta. Titaanin etuihin elektrodimateriaalina kuuluvat yleisimpiin vaihtoehtoihin verrattuna vähäisempien ja yksinkertaisempien prosessivaiheiden tarve sekä noin sata kertaa pienemmät raaka-aine kustannukset kultaan ja platinaan verrattuna.
IrOx ja TiN ovat yleisesti käytettyjä elektrodien pinnoitusmateriaaleja, joiden tarkoitus on laskea esimerkiksi titaanista tehtyjen elektrodien impedanssia ja kohinatasoa. Tässä työssä tutkittiin mahdollisuutta tehdä pinnoitukset vaihtoehtoisilla, MEA sovelluksissa uusilla menetelmillä, ALD:llä ja IBAD:lla. Vaikka näillä menetelmillä pinnoitettujen 30 μm elektrodien impedanssit (450 kΩ ALD IrOx:lle ja ~90 kΩ IBAD TiN:lle) eivät aivan laskeneetkaan yleisesti käytettyjen sputteroidun TiN:n (30-50 kΩ) ja huokoisen platinan eli Pt black:n (20-30 kΩ) tasolle, niin solumittauksissa etenkään IBAD TiN elektrodien ja sputteroitujen TiN elektrodien välillä ei ollut käytännössä lainkaan havaittavaa eroa kohinatasossa ja signaalipiikkien korkeuksissa. Täten IBAD TiN onkin täysin varteenotettava materiaalivaihtoehto niille, jotka suosivat TiN elektrodeja, mutta joilla ei ole sputteriointiin sopivaa laitetta käytettävissä. ALD:n ja IrOx:n yleiset ominaisuudet sen sijaan puoltavat ALD IrOx:n sopimista erityisesti geometrialtaan haastaviin tapauksiin tai sovelluksiin, joissa elektrodeilta vaaditaan erinomaisia stimulointiominaisuuksia.
Lopuksi tässä väitöstyössä kehitettiin esimerkkinä räätälöidyn MEA-levyn vaativasta sovelluksesta yksittäisten sydänsolujen mittaamiseen soveltuva MEA-levy. Tällainen MEA-levy tarjoaa yleisesti käytetylle, mutta työläälle patch-clamp menetelmälle ainutlaatuisen soluja vahingoittamattoman vaihtoehdon yksittäisten solujen tutkimiseksi, sekä mahdollistaa yksittäisen solun ominaisuuksien havainnoinnin paremmin, kuin usein varsin heterogeenisen soluviljelmän tutkiminen vakiomallisella MEA-levyllä. Ratkaisuna tähän oli elektrodien sijoittaminen lähelle solualueen ulkokehää sekä elektrodien halkaisijan kasvattaminen 80 μm:iin tavanomaisesta 30 μm:stä, mikä helpotti solujen asettamista elektrodeille ja mahdollisti solujen sähköisen sykesignaalin mittaamisen. Indiumtinaoksidi (ITO) elektrodien läpinäkyvyys mahdollisti lisäksi mekaanisen sykinnän analysoimisen kuvaan perustuvan mittaamisen avulla.
Titaanin käyttöä puhtaasti metallimuodossa on mikroelektrodimateriaalina yleisesti vältetty sen johtavuusominaisuuksia häiritsevän hapettumistaipumuksen vuoksi. Valmistukseen kuluva aika ja kustannukset voivat kuitenkin olla räätälöityjen MEA-prototyyppien kehittämisessä olennaisempia tekijöitä kuin prototyypin huippuunsa viritetty suorituskyky, jota usein arvioidaan 1 kHz taajuudella mitatun impedanssin avulla. Kuten odotettua, titaanielektrodien impedanssi oli huomattavan korkea (>1700 kΩ), mutta silti solumittauksissa sekä hermo- että sydänsolujen tuottamat kenttäpotentiaalisignaalit olivat erotettavissa kohinasta. Titaanin etuihin elektrodimateriaalina kuuluvat yleisimpiin vaihtoehtoihin verrattuna vähäisempien ja yksinkertaisempien prosessivaiheiden tarve sekä noin sata kertaa pienemmät raaka-aine kustannukset kultaan ja platinaan verrattuna.
IrOx ja TiN ovat yleisesti käytettyjä elektrodien pinnoitusmateriaaleja, joiden tarkoitus on laskea esimerkiksi titaanista tehtyjen elektrodien impedanssia ja kohinatasoa. Tässä työssä tutkittiin mahdollisuutta tehdä pinnoitukset vaihtoehtoisilla, MEA sovelluksissa uusilla menetelmillä, ALD:llä ja IBAD:lla. Vaikka näillä menetelmillä pinnoitettujen 30 μm elektrodien impedanssit (450 kΩ ALD IrOx:lle ja ~90 kΩ IBAD TiN:lle) eivät aivan laskeneetkaan yleisesti käytettyjen sputteroidun TiN:n (30-50 kΩ) ja huokoisen platinan eli Pt black:n (20-30 kΩ) tasolle, niin solumittauksissa etenkään IBAD TiN elektrodien ja sputteroitujen TiN elektrodien välillä ei ollut käytännössä lainkaan havaittavaa eroa kohinatasossa ja signaalipiikkien korkeuksissa. Täten IBAD TiN onkin täysin varteenotettava materiaalivaihtoehto niille, jotka suosivat TiN elektrodeja, mutta joilla ei ole sputteriointiin sopivaa laitetta käytettävissä. ALD:n ja IrOx:n yleiset ominaisuudet sen sijaan puoltavat ALD IrOx:n sopimista erityisesti geometrialtaan haastaviin tapauksiin tai sovelluksiin, joissa elektrodeilta vaaditaan erinomaisia stimulointiominaisuuksia.
Lopuksi tässä väitöstyössä kehitettiin esimerkkinä räätälöidyn MEA-levyn vaativasta sovelluksesta yksittäisten sydänsolujen mittaamiseen soveltuva MEA-levy. Tällainen MEA-levy tarjoaa yleisesti käytetylle, mutta työläälle patch-clamp menetelmälle ainutlaatuisen soluja vahingoittamattoman vaihtoehdon yksittäisten solujen tutkimiseksi, sekä mahdollistaa yksittäisen solun ominaisuuksien havainnoinnin paremmin, kuin usein varsin heterogeenisen soluviljelmän tutkiminen vakiomallisella MEA-levyllä. Ratkaisuna tähän oli elektrodien sijoittaminen lähelle solualueen ulkokehää sekä elektrodien halkaisijan kasvattaminen 80 μm:iin tavanomaisesta 30 μm:stä, mikä helpotti solujen asettamista elektrodeille ja mahdollisti solujen sähköisen sykesignaalin mittaamisen. Indiumtinaoksidi (ITO) elektrodien läpinäkyvyys mahdollisti lisäksi mekaanisen sykinnän analysoimisen kuvaan perustuvan mittaamisen avulla.
Kokoelmat
- Väitöskirjat [4864]