Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Forecasting multinomial stock returns using machine learning methods

Nevasalmi, Lauri (2019)

 
Avaa tiedosto
NevasalmiLauri.pdf (1.092Mt)
Lataukset: 



Nevasalmi, Lauri
2019

Matematiikan ja tilastotieteen tutkinto-ohjelma
Informaatioteknologian ja viestinnän tiedekunta - Faculty of Information Technology and Communication Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2019-06-03
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-201907152602
Tiivistelmä
In this thesis, the daily returns of the S&P 500 stock market index are predicted using a variety of different machine learning methods. We propose a new multinomial classification approach to forecasting stock returns. The multinomial approach can isolate the noisy fluctuation around zero and allows us to focus on predicting the more informative large absolute returns. Our in-sample and out-of-sample forecasting results indicate significant return predictability from a statistical point of view. Moreover, all the machine learning methods considered outperform the benchmark buy-and-hold strategy in a real-life trading simulation. The gradient boosting machine is the top-performer in terms of both the statistical and economic evaluation criteria.
Kokoelmat
  • Opinnäytteet - ylempi korkeakoulututkinto [40481]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste