Antimicrobial Detection Illuminated: Developing Bioluminescent Antibiotic Biosensors Based on Bacterial Gene Regulatory Elements
Virolainen, Nina (2012)
Virolainen, Nina
Tampere University of Technology
2012
Luonnontieteiden ja ympäristötekniikan tiedekunta - Faculty of Science and Environmental Engineering
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:978-952-15-3330-3
https://urn.fi/URN:ISBN:978-952-15-3330-3
Tiivistelmä
Antibiootit ovat olleet tärkein bakteeri-infektioiden hoitokeino aina toisesta maailmansodasta lähtien. Bakteeri-infektiot ovat maailmanlaajuisten kuolemansyytilastojen kärkisijoilla. Antibioottien huolimaton käyttö on kuitenkin johtanut antibioottiresistenssin nopeaan leviämiseen bakteerien keskuudessa sekä useille antibiooteille resistenttien patogeenien kehittymiseen. Tämän vuoksi antibiootit menettävät nopeasti antimikrobiaalista voimakkuuttaan, mitä voidaan pitää yhteiskunnan kyvyttömyytenä suojella arvokasta pääomaansa.
Euroopan Unioni valvoo antibioottien käyttöä eläimissä, joita hyödynnetään elintarvikkeiden tuotannossa. Eläinlääketieteellistä käyttöä säädellään resistenssin leviämisen ja ruoassa esiintyvien antibioottijäämien estämiseksi. EU:n lainsäädäntö osoittaa enimmäisjäämärajat eläinlääkinnällisille aineille eläinperäisissä elintarvikkeissa ja velvoittaa jäsenvaltiot laatimaan ja toteuttamaan eläimistä saatavien elintarvikkeiden kansallisen vierasainevalvontaohjelman. Valvontaan valittujen näytteiden joukosta seulotaan näytteet, joiden epäillään sisältävän jäämiä, joiden luonne ja pitoisuus varmistetaan lisäanalyysillä. Seulonnassa käytetään tavallisesti mikrobiologiseen kasvuinhibitioon perustuvia menetelmiä, ja varmistukseen fysikaalis-kemiallisia analyysejä.
Tässä tutkimuksessa tarkasteltiin kokosolubioantureilla tehtävien antibioottimääritysten soveltuvuutta antibioottijäämien seulontamenetelmäksi. Tetrasykliinispesifistä bioluminoivaa kokosolubiosensoria käyttäen kehitettiin seulontamenetelmä tetrasykliinijäämien tunnistamiseksi kananlihasta. Määritys saatiin herkistettyä EU:n enimmäisjäämärajojen tasolle helpottamalla tetrasykliinien pääsyä bioanturisoluun solukalvon läpäisykykyä lisäävällä polymyksiini B:llä sekä kahdenarvoisia kationeja kelatoivalla EDTA:lla. Tuloksena oli nopea, yksinkertainen ja kustannustehokas seulontamenetelmä, jolla oli korkea suoritusteho. Menetelmä kykeni havaitsemaan kaikki neljä eläinlääketieteessä käytettävää tetrasykliiniä sekä niiden 4-epimeeri aineenvaihduntatuotteet kananlihassa enimmäisjäämärajat alittavissa pitoisuuksissa. Tutkimus myös tuotti todisteita tetrasykliinien 4-epimeerien antimikrobiaalisesta aktiivisuudesta, joka aiemmin arveltiin puuttuvan 4-epidoksisykliiniltä.
Nisiini on laktokokkien tuottama lantibiootti eli peptidiantibiootti. Nisiinin käyttö elintarviketeollisuudessa säilöntäaineena (E234) sekä EU:n nisiinille asettama sallittu enimmäismäärä elintarvikkeissa luovat tarpeen nisiinin määritysmenetelmille. Tässä tutkimuksessa rakennettiin bioluminoiva nisiinispesifinen kokosolubioanturi, jota käytettiin määrittämään nisiinipitoisuuksia maidossa. Kehitetty määritys oli nopea ja yksinkertainen, eikä vaatinut laimennusta monimutkaisempaa näytteen esikäsittelyä. Määrityksen herkkyys oli alle pg/ml mittaluokassa, ja se oli herkin koskaan julkaistu nisiinimääritys. Määritystä käytettiin myös nisiinintuotannon tehokkuuden arvioinnissa mittaamalla nisiinipitoisuus sitä tuottavan Lactococcus lactis -kannan kasvumediumista. Samanaikaisesti nisiinintuottaja voitiin erottaa nisiiniä tuottamattomista kannoista. Tätä ajatusta tarkasteltiin laajemmin jatkotutkimuksessa,jossa nisiinibioanturia käytettiin seulomaan nisiinintuottajakantoja raakamaidosta. Yksinkertainen seulontamenetelmä perustui raakamaitobakteerien viljelmien peittämiseen ohuella bioanturikerroksella, jolloin nisiinintuottajapesäkkeiden ympärille muodostui biolumine-senssivyöhyke. Seitsemän tunnistettua nisiinintuottajapesäkettä jakautuivat geneettisen sormen-jäljen perusteella kolmeen ryhmään, ja ne olivat kaikki Lactococcus lactis subsp. lactis -alalajiin kuuluvia nisiini Z -variantin tuottajia. Lisäksi 91 laktokokkikannan paneelista tunnistettin kolme nisiini A -variantin tuottajaa. Spesifisyystutkimukset osoittivat, että vain nisiini indusoi bioluminesenssin bioanturibakteerissa eivätkä muut bakteriosiinipeptidit. Lisäksi kaikki nisiinigeeniä kantavat pesäkkeet indusoivat bioluminesenssin. Poikkeuksena oli yksi laktokokkikanta, jonka todettiin kantavan toimimatonta nisiinigeeniä.
Tietyille antibioottiryhmille spesifisen vasteen antavien säätelyelementtien puute saattaa vaikeuttaa kokosolubioanturien kehittämistä. Tässä tutkimuksessa karakterisoitiin makrolidispesifisen repressoriproteiini MphR(E):n DNA- ja ligandinsitomisominaisuuksia. Proteiinia muokattiin rationaalisen mutaatiosuunnittelun keinoin tarkoituksena tuottaa DNA- ja dimerisoitumisominaisuuksiltaan parempia mutantteja. DNA- ja ligandisitoutumista sekä makrolidiligandien indusoimaa dissosiaatiota DNA:sta tutkittiin fluoresenssianisotropialla ja massaspektrometrialla. Tutkimuksessa löydettiin mutantteja, joilla oli villityypin proteiinia parempi DNA-affiniteetti sekä ennallaan säilynyt kyky sitoa ligandeja ja indusoitua sitomisen vaikutuksesta. Yksi mutanteista muodosti rikkisillan avulla kovalenttisen dimeerin vastoin odotuksia. Kovalentti dimerisaatio paransi DNA-affiniteettia, mutta haittasi ligandin sitomista sekä induktiota. MphR(E):n ligandikirjo kattoi 14-jäsenisen laktonirenkaan makrolidit, mutta ei 16-jäsenisen renkaan makrolideja eikä linkosamideja. MphR(E) ja sen mutantit osoittivat mielenkiintoisia uusia ominaisuuksia, jotka voivat hyödyttää bioantureiden suunnittelua.
Johtopäätöksenä voidaan sanoa, että tämä tutkimus osoittaa kokosolubioanturien soveltuvan yksinkertaisten, luotettavien ja kustannustehokkaiden seulontamenetelmien kehittämiseen antibioottijäämien osoittamiseen elintarvikkeista. Nämä menetelmät osoittavat suurta herkkyyttä ja spesifisyyttä analyyttimolekyyliä kohtaan, ja niitä voidaan käyttää semikvantitatiiviseen sekä kvantitatiiviseen analysiin. Jäämien havainnoinnin lisäksi bioantureita voidaan käyttää antimikrobiaalisten aineiden tuottajien tunnistamiseen. MphR(E)-mutantit ovat lupaavia paranneltua säätelykykyä osoittavia reportterigeenin tuoton repressoreita käytettäväksi bioanturisovelluksissa. Ne ovat myös esimerkki rationaalisesta säätelyelementtien parantelusta uusien bioanturisovellusten kehittämiseksi.
Euroopan Unioni valvoo antibioottien käyttöä eläimissä, joita hyödynnetään elintarvikkeiden tuotannossa. Eläinlääketieteellistä käyttöä säädellään resistenssin leviämisen ja ruoassa esiintyvien antibioottijäämien estämiseksi. EU:n lainsäädäntö osoittaa enimmäisjäämärajat eläinlääkinnällisille aineille eläinperäisissä elintarvikkeissa ja velvoittaa jäsenvaltiot laatimaan ja toteuttamaan eläimistä saatavien elintarvikkeiden kansallisen vierasainevalvontaohjelman. Valvontaan valittujen näytteiden joukosta seulotaan näytteet, joiden epäillään sisältävän jäämiä, joiden luonne ja pitoisuus varmistetaan lisäanalyysillä. Seulonnassa käytetään tavallisesti mikrobiologiseen kasvuinhibitioon perustuvia menetelmiä, ja varmistukseen fysikaalis-kemiallisia analyysejä.
Tässä tutkimuksessa tarkasteltiin kokosolubioantureilla tehtävien antibioottimääritysten soveltuvuutta antibioottijäämien seulontamenetelmäksi. Tetrasykliinispesifistä bioluminoivaa kokosolubiosensoria käyttäen kehitettiin seulontamenetelmä tetrasykliinijäämien tunnistamiseksi kananlihasta. Määritys saatiin herkistettyä EU:n enimmäisjäämärajojen tasolle helpottamalla tetrasykliinien pääsyä bioanturisoluun solukalvon läpäisykykyä lisäävällä polymyksiini B:llä sekä kahdenarvoisia kationeja kelatoivalla EDTA:lla. Tuloksena oli nopea, yksinkertainen ja kustannustehokas seulontamenetelmä, jolla oli korkea suoritusteho. Menetelmä kykeni havaitsemaan kaikki neljä eläinlääketieteessä käytettävää tetrasykliiniä sekä niiden 4-epimeeri aineenvaihduntatuotteet kananlihassa enimmäisjäämärajat alittavissa pitoisuuksissa. Tutkimus myös tuotti todisteita tetrasykliinien 4-epimeerien antimikrobiaalisesta aktiivisuudesta, joka aiemmin arveltiin puuttuvan 4-epidoksisykliiniltä.
Nisiini on laktokokkien tuottama lantibiootti eli peptidiantibiootti. Nisiinin käyttö elintarviketeollisuudessa säilöntäaineena (E234) sekä EU:n nisiinille asettama sallittu enimmäismäärä elintarvikkeissa luovat tarpeen nisiinin määritysmenetelmille. Tässä tutkimuksessa rakennettiin bioluminoiva nisiinispesifinen kokosolubioanturi, jota käytettiin määrittämään nisiinipitoisuuksia maidossa. Kehitetty määritys oli nopea ja yksinkertainen, eikä vaatinut laimennusta monimutkaisempaa näytteen esikäsittelyä. Määrityksen herkkyys oli alle pg/ml mittaluokassa, ja se oli herkin koskaan julkaistu nisiinimääritys. Määritystä käytettiin myös nisiinintuotannon tehokkuuden arvioinnissa mittaamalla nisiinipitoisuus sitä tuottavan Lactococcus lactis -kannan kasvumediumista. Samanaikaisesti nisiinintuottaja voitiin erottaa nisiiniä tuottamattomista kannoista. Tätä ajatusta tarkasteltiin laajemmin jatkotutkimuksessa,jossa nisiinibioanturia käytettiin seulomaan nisiinintuottajakantoja raakamaidosta. Yksinkertainen seulontamenetelmä perustui raakamaitobakteerien viljelmien peittämiseen ohuella bioanturikerroksella, jolloin nisiinintuottajapesäkkeiden ympärille muodostui biolumine-senssivyöhyke. Seitsemän tunnistettua nisiinintuottajapesäkettä jakautuivat geneettisen sormen-jäljen perusteella kolmeen ryhmään, ja ne olivat kaikki Lactococcus lactis subsp. lactis -alalajiin kuuluvia nisiini Z -variantin tuottajia. Lisäksi 91 laktokokkikannan paneelista tunnistettin kolme nisiini A -variantin tuottajaa. Spesifisyystutkimukset osoittivat, että vain nisiini indusoi bioluminesenssin bioanturibakteerissa eivätkä muut bakteriosiinipeptidit. Lisäksi kaikki nisiinigeeniä kantavat pesäkkeet indusoivat bioluminesenssin. Poikkeuksena oli yksi laktokokkikanta, jonka todettiin kantavan toimimatonta nisiinigeeniä.
Tietyille antibioottiryhmille spesifisen vasteen antavien säätelyelementtien puute saattaa vaikeuttaa kokosolubioanturien kehittämistä. Tässä tutkimuksessa karakterisoitiin makrolidispesifisen repressoriproteiini MphR(E):n DNA- ja ligandinsitomisominaisuuksia. Proteiinia muokattiin rationaalisen mutaatiosuunnittelun keinoin tarkoituksena tuottaa DNA- ja dimerisoitumisominaisuuksiltaan parempia mutantteja. DNA- ja ligandisitoutumista sekä makrolidiligandien indusoimaa dissosiaatiota DNA:sta tutkittiin fluoresenssianisotropialla ja massaspektrometrialla. Tutkimuksessa löydettiin mutantteja, joilla oli villityypin proteiinia parempi DNA-affiniteetti sekä ennallaan säilynyt kyky sitoa ligandeja ja indusoitua sitomisen vaikutuksesta. Yksi mutanteista muodosti rikkisillan avulla kovalenttisen dimeerin vastoin odotuksia. Kovalentti dimerisaatio paransi DNA-affiniteettia, mutta haittasi ligandin sitomista sekä induktiota. MphR(E):n ligandikirjo kattoi 14-jäsenisen laktonirenkaan makrolidit, mutta ei 16-jäsenisen renkaan makrolideja eikä linkosamideja. MphR(E) ja sen mutantit osoittivat mielenkiintoisia uusia ominaisuuksia, jotka voivat hyödyttää bioantureiden suunnittelua.
Johtopäätöksenä voidaan sanoa, että tämä tutkimus osoittaa kokosolubioanturien soveltuvan yksinkertaisten, luotettavien ja kustannustehokkaiden seulontamenetelmien kehittämiseen antibioottijäämien osoittamiseen elintarvikkeista. Nämä menetelmät osoittavat suurta herkkyyttä ja spesifisyyttä analyyttimolekyyliä kohtaan, ja niitä voidaan käyttää semikvantitatiiviseen sekä kvantitatiiviseen analysiin. Jäämien havainnoinnin lisäksi bioantureita voidaan käyttää antimikrobiaalisten aineiden tuottajien tunnistamiseen. MphR(E)-mutantit ovat lupaavia paranneltua säätelykykyä osoittavia reportterigeenin tuoton repressoreita käytettäväksi bioanturisovelluksissa. Ne ovat myös esimerkki rationaalisesta säätelyelementtien parantelusta uusien bioanturisovellusten kehittämiseksi.
Kokoelmat
- Väitöskirjat [4866]