Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Trepo etusivu
  • Trepo
  • Väitöskirjat
  • Näytä viite
  •   Trepo etusivu
  • Trepo
  • Väitöskirjat
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Magnetic Resonance Image Segmentation and Signal Analysis for Medical Applications

Rossi, Maija (2011)

 
Tweet refworks
 
Avaa tiedosto
rossi.pdf (1005.Kt)
Lataukset: 



Rossi, Maija
Tampere University of Technology
2011

Luonnontieteiden ja ympäristötekniikan tiedekunta - Faculty of Science and Environmental Engineering
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
http://urn.fi/URN:NBN:fi:tty-2011111114876
Tiivistelmä
Magnetic resonance imaging (MRI) is a medical imaging method used mainly for imaging soft tissue, such as the brain. It has various advantages, such as the noninvasive and nonionizing technique used; high contrast and signal-to-noise ratio; and excellent definition of both anatomical and physiological details.
Most of the current clinical MRI applications are qualitative. However, to reduce both intra- and interreader variability and thus, possibly, to improve patient diagnosis, treatment, and recovery, advantages may be gained through quantitative means. These include parametric imaging methods, such as T1- and T2-mapping, and analyses, such as histogram analysis, segmentation, and volumetry. These methods, along with qualitative imaging, were studied at various magnetic field strengths in healthy volunteers, non-Hodgkin lymphoma patients, patients with mild traumatic brain injury, and patients with symptoms of Parkinson's disease.
Quantitative volumetric analyses using semi-automatic segmentation of both MRI and computed tomographic images were easy and reliable but slow. In the lymphoma patients, the tumor volume was greatly reduced, beginning immediately after the initiation of chemotherapy. A small residual tumor volume six months after the completion of treatment was predictive of survival. Besides percentage volume changes, absolute tumor volumes and their absolute changes during early stages of treatment were considered useful. Several imaging sequences, including both quantitative and qualitative, were correlated with putative iron content. Their clinical correlation and the possibility as early biomarkers of disease progression require further investigation.
Kokoelmat
  • Väitöskirjat [4096]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Yhteydenotto | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Yhteydenotto | Tietosuoja | Saavutettavuusseloste