Reframing the value of virtual prototyping: Intermediary virtual prototyping - the evolving approach of virtual environments based virtual prototyping in the context of new product development and low volume production
Leino, Simo-Pekka (2015)
Leino, Simo-Pekka
VTT
2015
Rakennetun ympäristön tiedekunta - Faculty of Built Environment
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201609134500
https://urn.fi/URN:NBN:fi:tty-201609134500
Tiivistelmä
This thesis studies how the evolving approach of virtual environments-based virtual prototyping can be evaluated in the context of product design and development in the manufacturing industry. The entry point for this research is the relatively long experience in applied research in virtual prototyping with industry. As the virtual prototyping technology has become more mature, the focus of research and development has extended from technology demonstrations towards utilization in product design and development processes. However, lack of scientific and practical knowledge of real benefits and the value of virtual prototyping has seemed to be a deterrent to its wider adoption of industry. The aim of this thesis is by means of scientific research to increase the knowledge of the value contribution of virtual prototyping as well as its impacts in a practical industrial context.
This problem was approached from the science base by formulating an expanded theory framework for value modelling, and from the problem base by an empirical case study in one manufacturing company. The research approach was constructive and exploratory.
The research results consist of three types of knowledge. Firstly, the scientific theoretical foundation was elaborated for initiating value modelling of virtual prototyping and virtual environments. Secondly, new knowledge on the value of virtual prototyping within new product development was created in an industrial case study. Finally, knowledge on how virtual prototyping (VP) impacts the company was reported. The impact was discussed in the dimensions of process, social and technological implications.
This research contributed to engineering design science by conceptualizing virtual prototyping in the context of product design and development expanding to the dimensions of human factors and management theory. Thus, the contribution is also manifested by constructing the expanded theory framework for virtual prototyping value modelling in four dimensions with causal justification from virtual reality technology to business value elements which led to the new concept of Intermediary Virtual Prototyping (IVP). The discussed concept of IVP underscores the many layers from technical advantages of virtual reality to the expanded mediating object of product development activity system.
The discussion was carried on from the perspective of a partially configurable products and manual work-intensive variant production mode. This perspective is novel compared to the majority of virtual prototyping and virtual environments literature. It is proposed that IVP is particularly beneficial in this context, where human skills and knowledge contribute to the flexibility of production system.
IVP should be considered as a strategic investment that will produce income in the long run. IVP contributes to the co-creation and variant production paradigms by involving human creativity at an early product design and development phase, thus increasing flexibility. IVP creates value in use, but in turn it impacts the company in all the four dimensions mentioned.
This problem was approached from the science base by formulating an expanded theory framework for value modelling, and from the problem base by an empirical case study in one manufacturing company. The research approach was constructive and exploratory.
The research results consist of three types of knowledge. Firstly, the scientific theoretical foundation was elaborated for initiating value modelling of virtual prototyping and virtual environments. Secondly, new knowledge on the value of virtual prototyping within new product development was created in an industrial case study. Finally, knowledge on how virtual prototyping (VP) impacts the company was reported. The impact was discussed in the dimensions of process, social and technological implications.
This research contributed to engineering design science by conceptualizing virtual prototyping in the context of product design and development expanding to the dimensions of human factors and management theory. Thus, the contribution is also manifested by constructing the expanded theory framework for virtual prototyping value modelling in four dimensions with causal justification from virtual reality technology to business value elements which led to the new concept of Intermediary Virtual Prototyping (IVP). The discussed concept of IVP underscores the many layers from technical advantages of virtual reality to the expanded mediating object of product development activity system.
The discussion was carried on from the perspective of a partially configurable products and manual work-intensive variant production mode. This perspective is novel compared to the majority of virtual prototyping and virtual environments literature. It is proposed that IVP is particularly beneficial in this context, where human skills and knowledge contribute to the flexibility of production system.
IVP should be considered as a strategic investment that will produce income in the long run. IVP contributes to the co-creation and variant production paradigms by involving human creativity at an early product design and development phase, thus increasing flexibility. IVP creates value in use, but in turn it impacts the company in all the four dimensions mentioned.
Kokoelmat
- Väitöskirjat [4864]