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ABSTRACT

Aleksi Saarilahti: Calibration of pricing models to bitcoin options
Master of Science Thesis
Tampere University
Master’s Degree Programme in Industrial Engineering and Management
May 2023

A type of derivatives, which use crpytocurrency as an underlying asset has become more
popular during the past years as they offer alternative solutions to traditional financial instruments.
Even though the dynamics and pricing principles of different financial derivatives have been rather
popular subjects in quantitative finance, the literature on crypto derivatives has been rather scarce.
The calibration of the pricing model is often considered an essential part of the derivative pricing,
aiming to find the optimal parameters of a certain model through the pricing data available. This
is typically done by using the quoted market prices or quoted implied volatilities. Even though the
obtained parameters are primarily for pricing purposes, they also give valuable information about
the characteristics of the underlying asset.

The purpose of this thesis is to conduct a calibration of asset pricing models to the European-
style call options, which use the bitcoin as an underlying asset. The option data involved was
acquired from the Deribit cryptocurrency exchange from the review period of September 30th

2021 to October 31st 2021. With respect to the model calibrations, the stochastic volatility models
of Heston and Bates are applied here. The calibrations of both models are carried out once
per day across the review period by applying implied volatilities. With each calibration, a quoted
implied volatility surface is established to which the model is calibrated. The study aims primarily
at analysing the calibrated parameters and their development throughout the review period. On
top of that, this study aims at answering what kind of implied volatility surfaces European-style
bitcoin call options develop, and how these change across the review period.

Based on the calibration results both models produce relatively good implied volatility surface
fits, especially for short maturities. The obtained parameters support the volatile behaviour of
bitcoin and the positive correlation between returns and volatility, which is not uncommon in the
crypto markets. The results also show that certain parameters have a more significant impact
on the final outcome. Despite a few exceptions, the parameters remain rather stable across the
review period. Based on the established implied volatility surfaces, the variation throughout the
review period is relatively large. However, when comparing the formed implied volatility surfaces
to the ones found in previous studies and literature, many similarities can be found. During the
review period, each IV surface provides a rather clear smile effect at short time to maturities, but
there is a tendency of a forward skewed shape when maturities increase. This also highlights the
growing demand of OTM- options in order to better hedge the price risk of bitcoin.

Keywords: model calibration, bitcoin, implied volatility surface, option pricing, stochastic volatility
models

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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Kryptovaluuttoja kohde-etuutena käyttävät johdannaiset ovat yleistyneet viime vuosina merkit-
tävästi tarjoten vaihtoehtoisia ratkaisuja tyypillisten rahoitusinstrumenttien rinnalle. Vaikka erilais-
ten johdannaisten dynamiikka sekä hinnoittelu ovat olleet erityisen suosittuja aiheita kvantitatiivi-
sessa rahoituksessa, kryptojohdannaisia on kuitenkin tutkittu vielä suhteellisen vähän. Keskeis-
tä johdannaisten hinnoittelussa on hinnoittelumallin kalibrointi, jossa kyseisen mallin optimaalisia
parametreja pyritään selvittämään markkinoilta saatavan hinnoitteludatan avulla. Tyypillisesti ka-
librointi suoritetaan käyttäen joko johdannaisten rahamääräisiä hintoja tai vaihtoehtoisesti niiden
implisiittisen volatiliteetin arvoja. Vaikka kalibroidut parametrit ensisijaisesti helpottavat hinnoitte-
lumallien käyttöä, ne antavat myös arvokasta tietoa kohde-etuuden käyttäytymisestä.

Tämän tutkimuksen tavoitteena on toteuttaa hinnoittelumallien kalibrointi eurooppalaisille op-
tioille, joiden kohde-etuutena on bitcoin. Kyseinen optiodata ladattiin Deribit-kryptovaluuttapörssistä
ja se sijoittui tarkasteluvälille 30.9. - 31.10.2021. Kalibroitaviksi malleiksi valikoituvat stokastisen
volatiliteetin mallit Heston ja Bates. Molemmat mallit kalibroidaan jokaisena tarkasteluperiodin päi-
vänä. Jokaisen päivän osalta bitcoin-optioille muodostetaan myös implisiittiset volatiliteettipinnat,
joita vasten hinnoittelumallien kalibraatiot toteutetaan. Tutkimuksessa pyritään ensisijaisesti analy-
soimaan kalibroituja parametreja sekä niiden kehittymistä tarkasteluperiodin aikana. Toissijaises-
ti työ pyrkii vastaamaan, minkälaisia implisiittisiä volatiliteettipintoja eurooppalaiset bitcoin-optiot
muodostavat ja kuinka ne kehittyvät tarkasteluperiodin aikana.

Saatujen tulosten perusteella molemmat hinnoittelumallit tuottavat kohtalaisen hyvän sovitteen
markkinoilta havaitun implisiittisen volatiliteettipinnan kanssa, erityisesti kun maturiteetit ovat ly-
hyitä. Saadut parametrit tukevat bitcoinin volatiilia käytöstä sekä positiivista korrelaatiota tuotto-
jen ja volatiliteetin välillä, joka on tyypillistä kryptomarkkinoilla. Tuloksista havaitaan myös, että
tietyillä parametreilla on selvästi suurempi vaikutus lopputuloksen kannalta. Pääosin parametrit
pysyvät tasaisina läpi tarkasteluperiodin muutamaa poikkeusta lukuun ottamatta. Muodostettujen
implisiittisten volatiliteettipintojen osalta pinnat kokevat kohtalaisen paljon vaihtelua läpi tarkastelu-
periodin. Tästä huolimatta pinnat kuitenkin tarjoavat monia yhtäläisyyksiä kirjallisuuden löydösten
kanssa. Tarkasteluperiodin aikana implisiittiset volatiliteettipinnat muodostavat selvästi havaittavan
hymy-efektin lyhyiden maturiteettien osalta, mutta pinnat tyypillisesti vinoutuvat eteenpäin matu-
riteetin kasvaessa korostaen miinusoptioiden voimistunutta kysyntää bitcoinin hintariskin hallitse-
miseksi.

Avainsanat: mallien kalibrointi, bitcoin, implisiittinen volatiliteettipinta, optioiden hinnoittelu, stokas-
tiset volatilitettimallit

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

1.1 Background

Financial markets have been changing rapidly over the past decades. Innovative solu-

tions and more complicated financial instruments have been issued into markets and new

participants have become involved in the financial ecosystem. The change has been

notably driven by the revolutionary development of technology allowing the transition to-

wards the digital realm. One of the greatest innovations within the financial market has

been cryptocurrencies operating through blockchain technology. Together, crypto assets

and blockchain have created one of the fastest growing industries as summarized by

Lipovyanov (2019, p. 5).

The first versions of digital currencies have appeared already in the 1980s (e.g. Chaum,

1983). However, those did not gain much ground since they were not able to solve a

fundamental issue within a digital cash environment relating to double-spending. During

the global financial crisis in 2008 the cryptocurrency environment changed for good, when

Satoshi Nakamoto (2008) released a theoretical ideology about blockchain technology

and its capabilities in decentralized networks, known as bitcoin. A year later, the actual

bitcoin was released when Satoshi made the first transaction, which was added to the

first block of the bitcoin blockchain.

Nowadays, with hundreds of forms of digital currencies in the financial market, bitcoin ap-

pears to be far more superior in terms of its applicability compared to other cryptocurren-

cies (Mir, 2020). Bitcoin’s popularity is not alone attributable to an individual characteristic,

but rather is the sum of several factors. To mention a few of these, the bitcoin environ-

ment operates without a central authority, making it completely independent (Lipovyanov,

2019, p. 28). Even though anyone can get involved in the bitcoin blockchain, it still allows

a safe place for funds without revealing the identity of the participant. Bitcoin has also

gained ground within portfolio management since it has provided comparable results to

those with gold (Härdle et al., 2020). Although Gkillas and Longin (2019) refer to bitcoin

as "the new digital gold", bitcoin’s price volatility has been shocking over the past few

years compared to gold.

Since bitcoin prices have suffered from a relatively high volatility, it has increased the
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need for hedging and managing the risk exposure of bitcoin (Borri, 2019) accelerating

the demand of bitcoin derivatives (Zulfiqar and Gulzar, 2021). A noteworthy landmark

in the development of cryptocurrency derivatives was related to the induction of bitcoin

futures in 2017 (Jalan et al., 2021). A few years later, European-style bitcoin options

were released making the hedging process even more flexible. However, the release of

new derivatives gives a reason to challenge the traditional derivative pricing models and

fundamentals which affect the pricing. Since a derivative pricing model should describe

the price movements of an underlying asset, it becomes rather interesting to evaluate the

valuation dynamics of derivatives that use the bitcoin as the underlying asset.

In the literature, a relatively lot of research has been published on the fundamentals of

the bitcoin price. However, the literature on the valuation of bitcoin derivatives is still quite

narrow. A few studies on the subject, such as Cao and Celik (2021) and Jalan et al.

(2021), have highlighted that the valuation dynamics of bitcoin derivatives driven by the

extreme volatile and uncertain behaviour are still rather unclear. In other words, there is

not an accurate pricing model to establish the fair value of cryptocurrency derivatives in a

consistent fashion.

The applicability of a certain pricing model can be evaluated through the model cali-

bration. The model calibration refers to a process where the parameters of a pricing

model are defined in a way that the model outputs replicate as closely as possible with

the observable outputs from the market (Büchel et al., 2022). The obtained parameters

are known as true parameters being used when the actual pricing will be done with the

calibrated model. The more accurate the calibration results are, the more valid the pre-

dictability of a pricing model is. Even though the model calibration represents a high-value

tool from a pricing perspective, it also provides essential information about the character-

istics of the underlying asset.

A suitable model alone does not guarantee good calibration results. As highlighted by Es-

cobar and Gschnaidtner (2016), the results are also affected by other calibration-related

aspects, such as the applied optimization algorithm, loss function and initial parameters.

Usually, the model calibration has been carried out through the quoted prices or implied

volatilities. Especially with the latter one, the model calibration can be done against the

quoted implied volatility surface, which makes it even easier to evaluate the characteristics

of the underlying asset.

Despite the growing availability of bitcoin options, the literature on the implied volatility

dynamics of bitcoin can be considered rather limited. In association with the topic in

question, Hou et al. (2020) and Zulfiqar and Gulzar (2021) have evaluated the charac-

teristics of bitcoin through the implied volatilities. They came across many similarities

compared to the equity market and made interesting findings about the sentiments of the

bitcoin traders.
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1.2 Objective and structure of the study

The purpose of this thesis is to conduct a calibration of asset pricing models to the

European-style call options, which use the bitcoin as an underlying asset. The option

data is based on the Deribit cryptocurrency exchange from the review period of Septem-

ber 30th 2021 until October 31st 2021. With respect to the model calibrations, we apply

two option pricing models introduced by Heston (1993) and Bates (1996). The Heston

model can be considered a classic stochastic volatility model whereas the Bates model

represents an extension of the Heston model with an additional jump diffusion part in the

price process.

The calibrations of both models are carried out once per day across the review period by

applying implied volatilities. With each calibration, a quoted implied volatility surface is

formed to which the model is calibrated. This thesis aims to cover the following research

questions keeping the main focus on the latter one:

1. What kind of implied volatility surfaces do European-style bitcoin call options de-

velop, and how do those change across the review period?

2. What kind of parameters and mean squared errors are obtained when the Heston

and Bates asset pricing models are calibrated against quoted implied volatility sur-

faces, and how do those parameters and mean squared errors develop throughout

the review period?

This study is structured in the following manner. Chapter two briefly summarizes insights

from the literature related to cryptocurrencies, keeping the main focus on bitcoin. This is

followed by an insight into the pricing of European-style call options through the Heston

and Bates models in chapter three. That same chapter includes a brief breakdown of op-

tion pricing through the fast Fourier transform and the basic concepts of implied volatility

derivation. The chapter concludes with a discussion about the selection of the models.

Chapter four introduces the main features of a model calibration process, the Nelder-

Mead algorithm as well as standard errors and stabilities of model parameters. Further-

more, the illustrative effects of changing parameters are explained. Chapter five gives

a short introduction to the research process as well as data acquiring and processing.

Also, that same chapter looks at the main assumptions related to the empirical part and

includes the considerations about the reliability and validity of the results.

In chapter six, the empirical results about the calibrations and implied volatility surfaces

are introduced and discussed. At the end of the thesis, the main findings based on the

empirical results are summarized.
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2. CRYPTOCURRENCY

This chapter briefly summarizes relevant insights from the literature related to cryptocur-

rencies. As the data applied in this thesis is based on bitcoin options, the chapter will

give a more comprehensive overview over literature related to bitcoin. At the end of the

chapter, the findings about the bitcoin price dynamics are introduced shortly.

It is important to note that the exact background of the technicalities of bitcoin are beyond

the scope of this thesis. However, the topic in question is summarized shortly within this

chapter to provide a necessary understanding for the subject and this thesis itself.

2.1 Establishment of cryptocurrencies

For a long time, fiat currencies have been at the heart of modern monetary policy. Accord-

ing to Dorn (2017, p. 1), a new era began in August 1971 when President Nixon enacted

a plan that foreign central banks were not allowed to freely convert their dollars for gold

at the official exchange rate. At about the same time numerous national central banks

started to implement a more comprehensive monetary policy to control the money sup-

ply within their economies. A widely accepted theme of regulated monetary policies has

been inflation targeting, which however, has had somewhat varying degrees of success

over the years and across different countries. (Lipovyanov, 2019, p. 23).

Fiat money represents a type of currency that is issued by a government without having

intrinsic value since it is not backed by anything (Mir, 2020). In the fiat environment, as

explained by Franco (2014, p. 5), there is a government decree declaring the currency

to be a legal tender. In other words, a government concludes whether some payment

will be recognized as a trade settlement in a country. The Euro and the US dollar are

good examples of fiat currencies being usually applied in global trade, as both of these

currencies represent large and very credible economies in the world.

Regardless of the popularity of the fiat system, there are some contradictory issues within

the fiat-based environment. Based on Mir’s (2020) study, the fiat system suffers from

a lack of privacy as intermediaries, such as commercial banks, have to maintain a lot

of personal information about their customers. Furthermore, that information is usually

shared with other authorities. The author also emphasizes the vulnerability to economic
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and political situations since global crises between big economies are reflected in the

value of the fiat currency (Mir, 2020). Lipovyanov (2019, p. 17) highlight similar issues

about the weak fiat systems being exposed to economic uncertainty. They further note

that these kind of difficulties may at worst lead to hyperinflation where the value of a

certain currency falls enormously, as happened in Zimbabwe in 2007 (Lipovyanov, 2019,

p. 17).

Several factors, such as a need to deal with the uncertainty in the existing economy (Raj,

2019, p. 12), have accelerated the evolutionary steps towards digital cryptocurrencies

driven by blockchain technology. A digital currency itself was not so much a new concept,

but the concept of an open-source currency without the need for a central authority was

revolutionary, as noted by Härdle et al. (2020).

According to Härdle et al. (2020), a cryptocurrency represents a digital asset that uses

blockchain technology to control, secure and verify its transactions. The blockchain tech-

nology is based on a distributed network and hence it is usually referred to as distributed

ledger technology (more details will be presented in Section 2.2). While the fiat currencies

are regulated and controlled by the irrational governments and central banks, cryptocur-

rencies are based on purely science, programming and mathematics, as highlighted by

Lipovyanov (2019, p. 20).

It should be noted that nowadays there exists a large number of different cryptocurren-

cies, each with their specific set of principles and rules. As Mir (2020) debates, this is

partly attributable to the fact that people are becoming more and more familiar with the

new digital form of money and starting to move their interests towards cryptocurrencies.

They noted that people are especially attracted by the high security of cryptocurrencies

and their capabilities to execute relatively fast online transactions. Even though the past

few years have revealed a lot of curiosity about cryptocurrenices, the transactions are

still mostly executed by denominating them at first in the fiat currency as concluded by

Lipovyanov (2019, p. 20).

In the beginning, digital payment methods and currencies required a trusted third-party

intermediary, for example MasterCard, to execute the transaction. In order to operate

without third parties, an uncomplicated way to create digital value is to issue value to a

certain data pattern, such as a string form of binary numbers. However, this approach

includes a problem called double-spending. The double-spending problem relates to in-

formation of currencies that can be replicated very easily at barely any cost, which predis-

poses cryptocurrencies to scams and criminal activities. Until the release of bitcoin, the

double-spending problem was present and digital payment methods and currencies were

mostly handled through third party intermediaries. (Franco, 2014, p. 11-13)
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2.2 Bitcoin and blockchain

The idea of bitcoin was invented in 2008 based on Satoshi Nakamoto’s (2008) theoretical

ideology about blockchain technology and its capabilities in decentralized networks. A

year later, the actual bitcoin was released when Satoshi made the first transaction, which

was added to the first block of the bitcoin blockchain. The first block is more familiarly re-

ferred to as the genesis block and later it has become the proof of blockchain’s legitimacy.

(Raj, 2019, p. 10)

Bitcoin was the first cryptocurrency solving the problem of double-spending in a decen-

tralized way (Raj, 2019, p. 10). The establishment of the bitcoin could not have come at a

better time since bitcoin’s launch during the global economic and financial crisis in 2008

and 2009 was one of the most meaningful things to ever happen in the modern monetary

history, as argued by Lipovyanov (2019, p. 22).

Bitcoin revolutionized the era of digital currencies as it was the first cryptocurrency which

was not controlled or packed by any individual entity or country (S. Zhang et al., 2019).

That means bitcoin is purely decentralized and there is no institution, person or central

server behind it (Franco, 2014, p. 3-4). Ever since bitcoin was released, it has attracted

a lot of interest among people. As noted by Franco (2014, p. 6-8), this is partly driven

by the fact that bitcoin is an open-source software. The open-source software makes the

established source code accessible for anyone to modify, use or develop it for free. This

has given rise to many alternative cryptocurrencies as well.

Bitcoin itself is a rather complex entity and describing all its features would fall out of

the scope of this thesis. However, the topic in question is summarized shortly below to

provide the necessary understanding for the subject and this thesis itself. As supported

by Lipovyanov (2019, p. 37), in the big picture bitcoin’s main fundamentals can be divided

into four different topic areas: (i) blockchain or distributed ledger technology (DLT), (ii)

peer-to-peer network, (iii) cryptography and (iv) proof-of-work consensus algorithm.

The foundation of the entire bitcoin decentralized system is the blockchain technology. As

stated by Franco (2014, p. 95), in essence blockchain refers to a distributed database

holding all the bitcoin transactions since the beginning. The author also stated that

blockchain represents a method to secure this database (Franco, 2014, p. 95). Ac-

cording to Lipovyanov (2019, p. 38), blockchain consists of blocks and each block repre-

sents a type of data structure including transaction records and a link between the blocks

(hash). Note that old transactions (blocks) are never removed from the chain and hence

a blockchain can only increase in length as noted by Franco (2014, p. 105).

A blockchain is distributed across a wide computer network and therefore it is also called

a distributed ledger. Each computer in the network holds the same information related to

a series of transactions. (Lipovyanov, 2019, p. 38) This network is more familiarly known
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as a peer-to-peer network (P2P), which removes extra intermediaries and establishes

trust between unknown parties. Based on Raj (2019, p. 80-81), a P2P network means

a network where groups of autonomous computers (nodes) are connected and equally

privileged, being open to everyone. The P2P network shares information without any

centralized servers.

When considering the concept about a network available to everyone, it also exposes the

system to greater risks. This brings up the next key element in bitcoin design called cryp-

tography. Cryptography can be considered a somewhat extensive topic but according to

Lipovyanov (2019, p. 44), cryptography represents the science of secure communication

that is used to protect all kinds of private information from falling into the wrong hands.

Based on Raj (2019, p. 23) the fundamental objective of cryptography is to allow two

participants to communicate over an unsecure environment by encrypting the information

from the sender to a form that can only be decrypted by the receiver.

There are several cryptography approaches in the bitcoin environment but a few of them

rise above the rest. As one example Lipovyanov (2019, p. 44) highlights the meaning of

private and public keys. As defined by Franco (2014, p. 53), the public key is applied by

the sender to protect and encrypt data relating to the transaction. The receiver can then

decrypt the transaction data by using the personal private key generated by a user’s bit-

coin wallet software. Note that the private key must not be given to others since it provides

access to the user’s bitcoins on the blockchain. Regardless of the several cryptography

methods, the most important approach in the bitcoin system is known as hashing, which

is considered one of the most commonly applied primitives of cryptography as argued by

Raj (2019, p. 26).

A hash function is an algorithm that applies information of arbitrary length as an input

resulting in a string as an output, called the hash value (Franco, 2014, p. 95). Within the

bitcoin environment, hashing is used in the blockchain to establish an identity string for

each of the blocks by computing their hash values. Each block consists of the hash value

of the previous block and hence they form a chain of blocks. (Raj, 2019, p. 48) Further-

more, hashing and hash functions represent very essential parts of the bitcoin system

since they create the basis of the bitcoin’s proof-of-work consensus as emphasised by

Lipovyanov (2019, p. 50).

Proof-of-work (PoW) can be considered as a consensus algorithm to prove that a single

node has actually done some work to establish a new block of the blockchain (Raj, 2019,

p. 10). The proof-of-work consensus plays an essential part in the bitcoin ecosystem

since each transaction is validated through the proof-of-work by solving the cryptographic

hash puzzles. In other words, bitcoin applies cryptographic hash functions introduced

previously to carry out the proof-of-work mechanism as noted by Franco (2014, p. 96).

These elements alone do not make bitcoin exceptional, but together they allow the pro-
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cess of updating and maintaining the transactions of the blockchain known as mining.

Conclusively, mining refers to the process where each transaction is verified and added

to the blockchain. The participants involved in this process are called miners (Küfeoğlu

and Özkuran, 2019).

According to Lipovyanov (2019, p. 55-60), the mining process starts when the miners

gather new transaction data. After receiving such data, each miner verifies every trans-

action against a long list of criteria. After these verified transactions are gathered to the

memory pool, a space for valid but still unconfirmed transactions. Next, miners aggregate

the transactions in a candidate block with certain information, such as a creation times-

tamp, derived through hash functions resulting in a unique digital fingerprint. However,

all the necessary information is not known and thus peers of the bitcoin network need to

compete against each other through the proof-of-work by solving the cryptographic hash

puzzles. The first miner who manages to compute a hash for the new block, i.e. finds

a solution to the proof-of-work puzzle, gets the right to add a new block and update the

ledger of pending transactions. The new block is shared to everyone on the network and

each node needs to verify the block to make sure there is nothing wrong with it. Finally,

each node updates the copy of the new block in their own blockchain.

Moreover, the miner who successfully managed to solve the puzzle receives a reward

of a fixed amount of bitcoins and all transaction fees attached to the transaction as a

compensation for the consumed time (Härdle et al., 2020). Actually, these gained rewards

are the only way to release new bitcoins into circulation. Therefore, mining is also referred

to as a process of making new bitcoins as stated by Küfeoğlu and Özkuran (2019).

According to Franco (2014, p. 107-108), the mining process for one block takes around

10 minutes on average. The author also noted that the reward gained from the verification

task will be halved every 210 000 blocks taking roughly 4 years. Since the reward is expo-

nentially decreasing, the total number of bitcoins will settle to 21 million coins. However,

this is estimated to happen in 2140 at the earliest writes Raj (2019, p. 260). When the

total number of bitcoins is reached, the reward for the miners includes only the transaction

fees of bitcoins.

2.3 Dynamics of bitcoin price

Bitcoin’s price development has been explosive during the past years (Figure 2.1). Be-

tween the years 2015 and 2017, the evolution of bitcoin’s price was rather stable and the

price was varying mostly between USD 200 and USD 1 000. However, in the beginning of

2017, the popularity of cryptocurrencies increased rapidly and the price almost reached

the level of USD 20 000 at the end of 2017. This had implications for the entire bitcoin

environment and for example accelerated the evolution of the bitcoin mining industry ac-

cording to De Vries (2020). Since 2017, the price of bitcoin has been varying a lot, the
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highest peak so far was seen in November 2021 when the price exceeded the level of

USD 65 000. At the time of writing this thesis in March 2023, the price has been around

USD 24 000 with a market capitalization of over USD 500 billion based on the CoinDesk’s

BTC price index (CoinDesk, n.d).

Figure 2.1. BTC price development from the 1st of January 2015 to the 20th of March
2023 (CoinMarketCap, n.d).

Ever since the first bitcoin transaction was recorded in 2009, the drivers explaining bit-

coin’s price have become a somewhat trending topic among practitioners. To mention a

few of them, for example, Hayes (2017) and Bhambhwani et al. (2019) have examined

on how certain drivers such as the rate of unit production, computing power and network

size impact on bitcoin’s price. Furthermore, while Athey et al. (2016) tried to develop a

framework for pricing bitcoin, Aste (2019) investigated the connection between the bitcoin

price and investor sentiments.

However, even though there exists a lot of research on the subject, the fundamental

value of bitcoin and the factors driving its price are still rather unclear and not widely

acknowledged as noted by various scholars (W. Zhang et al., 2021; Alexander, Deng, et

al., 2022). In comparison with more traditional equity assets, bitcoin does not have similar

price fundamentals, such as simple cash flows or dividends, which could be applied in

determining the fair market price. Instead, bitcoin reminds more of a physical commodity,

such as gold, whose price is driven by supply and demand as well as the ability to maintain

its value over time. (Santos-Alborna, 2021, p. 41)

When looking at Figure 2.1, it’s rather easy to conclude how volatile bitcoin really is. This

is supported by several studies in the literature, one of which is Hou et al. (2020) arguing
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that the bitcoin’s price behaviour is clearly more volatile in comparison to stocks. Hou

et al. (2020) also highlight that both the bitcoin prices and returns are very sensitive to

big news and events in the market. Note that there is not one individual factor alone

making bitcoin incredibly volatile, but it is rather related to many separate factors such as

its unregulated microstructure that allows everyone to take part (Lipovyanov, 2019, p. 6)

and its rather complex mining dynamic (Santos-Alborna, 2021, p. 48).

Since bitcoin has suffered from a relatively high volatility, it has increased the need for

hedging and managing the risk exposure as noted by Borri (2019). Hence, this has

accelerated the emergence of bitcoin derivatives. According to Jalan et al. (2021), a

remarkable landmark in the development of cryptocurrency derivatives was related to the

induction of bitcoin futures in 2017. Through the bitcoin futures, traders and institutional

investors were able to hedge their positions for the first time against bitcoin’s relatively

high price risk.

The release of bitcoin derivatives offered a convenient way of short selling, and thus they

accelerated the integration of bitcoin and traditional institutional investors by providing an

efficient framework for trading purposes (Köchling et al., 2019). Later on, the hedging of

cryptocurrency positions became more flexible with the release of options in bitcoin and

ethereum. As highlighted by Hoang and Baur (2020) options have some advantages over

futures as they tend to offer more maturity-strike combinations for hedging purposes.

Usually, bitcoin options have been considered as so-called inverse products since the

possible payoff has been often denominated in bitcoins instead of some fiat currency. For

instance, these types of inverse BTC options are provided by Deribit, which is considered

one of the largest exchanges for crypto options. The characteristic of inverse bitcoin

options has been explored more comprehensively by Alexander et al. (2021) and Teng

and Härdle (2022). The authors conclude that BTC inverse options comply with slightly

different pricing and hedging principles compared to standard options (Alexander et al.,

2021; Teng and Härdle, 2022).

Bitcoin has also provided new diversification opportunities for portfolio management. As

highlighted by Härdle et al. (2020) bitcoin has the prerequisites to replace gold in some

situations since they have many similarities as both are dependent on mining and both

have a finite supply. This is also supported by Gkillas and Longin (2019) who referred to

bitcoin as "the new digital gold" which can represent an important role in asset manage-

ment and provide comparable results as those with gold. Moreover, Y. Liu et al. (2022)

reviewed several price and market drivers in the stock market and their counterparts within

the cryptocurrency context. As a result, they identified some achievable and successful

long-short strategies by applying cryptocurrencies.

Bitcoin and other cryptocurrencies have often been associated with arbitrage opportuni-

ties amongst scholars. As proposed by Makarov and Schoar (2020) and Krückeberg and
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Scholz (2020), crypto traders are able to find considerable arbitrage possibilities within

the bitcoin market. Based on Härdle et al. (2020), this is partly attributable to numerous

cryptoexchanges with even more cryptocurrencies. Therefore, price deviations driven

by market inefficiencies inherently exist. For example, bitcoin is one of the most liquid

cryptocurrencies without having an agreement on the “spot” price. These observations

are also supported by Bistarelli et al. (2019) who emphasized different cryptocurrency

arbitrage strategies driven by the cryptoexchanges representing different prices.
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3. OPTION PRICING

This chapter focuses on option pricing from a European call option perspective since the

model calibrations within this thesis have been carried out to the European-style BTC

call options. In general, options refer to a type of financial derivative allowing their owner

the right, but not the obligation, to buy or sell the underlying asset at a given price by a

certain date. When it comes to European-style options, those can be exercised only on

their maturity date.

As highlighted in Section 2.3 bitcoin options have been usually considered as inverse

products, since the possible payoff has been usually denominated in bitcoins instead of

some fiat currency. However, in this thesis it is assumed that the option holder can convert

the possible BTC option payoff immediately into the domestic currency. Therefore, the

applied BTC options have been considered more like standard European-style options

than inverse options.

In this study, the Heston and Bates asset pricing models have been applied. To give

a comprehensive overview of these those models, the basic concepts of diffusion mod-

els and jump diffusion models will be introduced in this chapter. Furthermore, a brief

breakdown of option pricing through the fast Fourier transform and the basic concepts of

implied volatility will be provided below. Finally, the selection of the models is discussed.

3.1 Diffusion models

This section briefly illustrates the basic concepts of pricing models based on diffusion

processes. As defined by Ratcliff and Tuerlinckx (2002), the diffusion process refers to

a continuous variation of the discrete random walk process. The diffusion process is

usually suitable with a certain situation where a given variable makes two-choice deci-

sions. According to Kienitz and Wetterau (2013, p. 35), several well-known asset pricing

models are based on the diffusion process. Those models are usually described through

a stochastic differential equation which is satisfied by a Brownian motion (known as a

Wiener process) representing a continuous stochastic process.

Based on Hull (2012, p. 280), stock prices are often assumed to comply with the Markov

process. As defined by Ibe (2013, p. 49-52), the Markov Process can be considered a
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certain type of stochastic process where the probability of each event is determined by

the previous event. Hence, with respect to stock prices, the historical price development

is impractical and irrelevant for estimating future prices since only the current stock price

is meaningful for the future development. Furthermore, when a unit of time is close to

zero and stock prices are assumed to comply with the Markov process, the stochastic

process for the time unit resembles the Wiener process.

Below is a simple derivation of the Wiener process by following Hull (2012, p. 282-287).

The variable z complies with the Wiener process if the following assumptions are satisfied:

1. The change of the variable z within a small period of time ∆t can be described as:

∆zt = ϵt
√
∆t, (3.1)

where ϵt follows a standardized normal distribution with a mean of zero and a vari-

ance rate of 1. This means that ∆zt is a normally distributed random variable with

mean of zero and standard deviation of
√
∆t.

2. The variable ∆zt complies with the Markov process introduced above. In other

words, the values of ∆zt within short time intervals are independent.

In a stochastic process, a drift rate and variance rate refer to the mean change and

variance per unit time. The basic Wiener process of ∆zt defined above has a drift rate of

0 and a variance rate of 1. Since the drift rate is zero, the future value of z at a given time

t is equal to its current value. When the drift rate and the variance rate represent some

other values, the Wiener process is called a Generalized Wiener process which can be

described in terms of ∆zt for a certain variable x as follows:

dxt = adt+ bdzt, (3.2)

where a and b represent constant variables. Moreover, dzt models a Wiener process

of ∆zt when t → 0. The term of adt represents the drift rate of a per unit of time for

variable x. In a similar fashion, the term of bdzt illustrates the variance rate which can be

considered as an increased variability to the path movement followed by the variable x.

The generalized Wiener process assumes that the expected drift rate and variance rate

are constant. Obviously, the constant drift rate is not appropriate since the expected rate

of return is not independent of the asset’s price. Hence the assumption about the constant

drift rate is substituted by an assumption where the expected drift rate is divided by an

asset price. If there is not any uncertainty that the variable of dzt = 0, the equation for the

asset price can be written in the following manner:

∆St = µSt∆t, (3.3)
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where the St represents the asset price at a certain time t and µ means the asset’s

expected rate of return. Therefore, the µSt implies the expected drift rate in the asset

price of St. Within a short time period of ∆t, the expected growth in the asset price of St

can be represented as µSt∆t. When ∆t decreases towards zero, the previous equation

can be described as follows:

dSt = µStdt. (3.4)

The equation can be presented alternatively as:

dSt

St

= µdt. (3.5)

Undoubtedly, the development of an asset price includes some uncertainty making the

variable dzt ̸= 0 which means that an investor is unaware of the expected rate of return

regardless of whether the asset price is high or low. Now, when also taking the Wiener

process of dzt into account, it leads to the following equation:

dSt = µStdt+ σStdzt (3.6)

or alternatively:

dSt

St

= µdt+ σdzt, (3.7)

where the variable σ represents the standard deviation of the asset price, referred to as

volatility and σ2 refers to the variance of the asset price. The equation defined above

is one of the most applied dynamics for modelling the asset price behaviour. Note that

equations of (3.6) and (3.7) assume a real world environment while the risk neutral en-

vironment is usually applied in asset pricing. Therefore, the expected rate of return µ is

often modelled through a risk-free rate of r.

3.1.1 Black-Scholes model

The pricing process for European-style options changed for good in 1973 when Fisher

Black and Myron Scholes introduced a new option pricing model called the Black-Scholes

model (BS model) (Black and Scholes, 1973). The key suggestion behind the model was

to eliminate the risk by applying a hedge strategy of buying and selling the underlying

asset at the right time as highlighted by the scholars (Black and Scholes, 1973). It should

be noted that the BS model has been considered one of the most remarkable models in

the late history of modern finance. The basic concepts of the BS model will be briefly
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introduced in this section as they provide the basis for the development of the Heston and

Bates models.

The functionality of the BS model depends on several assumptions related to the pricing

environment. Those are summarized clearly by Boyle and McDougall (2019, p. 86) in the

following manner:

1. Asset prices are continuous and lognormally distributed. Moreover, the prices follow

a geometric Brownian motion (i.e. Wiener process) with a constant expected return

of µ and volatility of σ.

2. Assets can be sold short.

3. Assets are completely divisible without any taxes or trading costs.

4. Dividends do not exist on the underlying asset over the maturity of the option.

5. Markets are efficient and thus there are no arbitrage opportunities available.

6. The risk-free rate r is constant and equal for borrowing and lending actions.

The common solutions for the Black-Scholes differential equation (3.13) have been briefly

illustrated here by following Hull (2012, p. 299-314). As mentioned before, the asset price

process of the BS model follows the geometric Brownian motion, and thus it is consistent

with the equation (3.6). Henceforth, let us denote the Wiener process as dWt instead of

dzt. Driven by this, the diffusion equation (3.6) for the underlying price of S at time t can

be given as follows:

dSt = µStdt+ σStdWt, (3.8)

where µ is the expected rate of return (drift) and σ represents the volatility. It should be

noted that the price process above is priced under a physical probability measure reflect-

ing the situation, where investors would require more profit for higher risk. Therefore, the

expected return should be adjusted with a certain appropriate risk premium when calcu-

lating the fair price of a derivative. Unfortunately, some of the derivatives are riskier than

others leading to different risk premiums and providing undesirable arbitrage opportuni-

ties. Since the risk is somewhat difficult to quantify, the assets can be also priced under a

risk-free probability measure instead of trying to separate the risk premiums for each in-

vestor. By applying the risk-free probability measure, it is assumed that financial markets

are efficient and free from arbitrage opportunities. Furthermore, the price process (3.8)

under the risk-free probability can be defined as follows:

dSt = rStdt+ σStdW
∗
t , (3.9)

where variable r and dW ∗
t refer to a risk-free rate and the Wiener process modified by
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a risk-free probability measure. Overall, equations (3.8) and (3.9) are identical when the

returns are discounted through the risk-free discount rate of r.

The defined price process (3.8) as such does not represent a very practical or applica-

ble form to be used in option pricing. A well-known process for differential calculus is

called Itô’s lemma. Itô’s lemma is based on Itô’s (1951) study and it basically refers to

an approach of modelling a stochastic process where both the function of some variable

and the variable itself follow the stochastic process. By applying Itô’s lemma, the price

process (3.8) can now be presented in a way that f refers to the price of the derivative

whereas S and t imply the asset price and time. When supposing that f is some function

of variables S and t, the price process can be defined in the following manner:

df =

(︃
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

)︃
dt+

∂f

∂S
σSdWt. (3.10)

The above equation can be also presented as a discrete version:

∆f =

(︃
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

)︃
∆t+

∂f

∂S
σS∆Wt, (3.11)

where ∆f is considered as changes in the derivative price f within the small time period

of ∆t.

Since the Wiener process behind the stochastic process for the variable and its function

is similar, the same uncertainty ∆Wt affects both S and f . Therefore, the portfolio that

consists of one underlying and derivative can be established in a way that the Wiener

process is eliminated. The establishment of such a portfolio is illustrated clearly by Hull

(2012, p. 309-310). Driven by this, the equation (3.10) can be now given as follows:

(︃
∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

)︃
∆t = r

(︃
f − ∂f

∂S
S

)︃
∆t (3.12)

aiming to

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf. (3.13)

The equation (3.13) above is called the Black-Scholes differential equation representing

one of the most essential findings based on Black and Scholes’s (1973) study. Note

that the equation (3.13) can be solved in many different ways, but usually it is applied to

provide a closed-form solution for option prices. When the equation is solved, it leads to a

certain partial derivative equation depending on the used boundary conditions. Boundary

conditions are commonly applied to define an upper and lower limit for the acceptable
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price of the derivative. The used boundary conditions may vary extensively due to the

type of the derivative. Widely used boundary conditions for European-style call and put

options are described below:

fcall = max (ST −K, 0) (3.14)

and

fput = max (K − ST , 0) , (3.15)

where T refers to the maturity time of the option. Moreover, ST represents the asset price

when t = T and K implies the strike price of the option.

As highlighted by Hull (2012, p. 313), one of the most remarkable solutions to the equation

(3.13) is known as the Black-Scholes formulas to establish the prices for the European-

style call and put options. Those can be given as follows:

Ct = S0N (d1)−Ke−rTN (d2) (3.16)

and

Pt = Ke−rTN (−d2)− S0N (−d1) , (3.17)

where

d1 =
ln (S0/K) + (r + σ2/2)T

σ
√
T

(3.18)

d2 =
ln (S0/K) + (r − σ2/2)T

σ
√
T

= d1 − σ
√
T , (3.19)

in which Ct and Pt represent the prices of the call and put options. While S0 refers to

the initial stock price (at time zero), σ is the volatility of the stock price, K and T are the

strike price and maturity time of the option and r refers to the constant risk-free rate. On

top of that, N(x) represents the cumulative probability distribution function for a standard

normal distribution.

Even though the BS model has been widely appreciated, it includes some illogical as-

sumptions, which is one of the reasons why the model has been faced with some crit-

icism about its accuracy and functionality (Teneng, 2011). As stated by Boyle and Mc-
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Dougall (2019, p. 85-86), the BS theorem supposes that the underlying asset prices are

log-normally distributed, and thus the prices cannot include jumps, which brings about

a very controversial and unrealistic situation compared to the normal behaviour of the

asset prices. Moreover, the model assumes that the volatility is constant, although the

literature provides several deviant findings on this subject (e.g. Heston, 1993; Kienitz and

Wetterau, 2013, p. 54).

On top of that, the Geometric Brownian motion itself has faced some negative discussion

(Teneng, 2011). Since the Black-Scholes model supposes the asset prices are described

by the random walk and the prices are log-normally distributed, there cannot occur any

correlation between the asset prices. However, there actually has been observed a cor-

relation between the prices driven by the fact that stock prices are determined by several

social and economic factors which are correlated with each other as noted by Teneng

(2011).

3.1.2 Heston model

Even though some asset pricing models assume that the volatility is constant, various

studies have proven that the volatility development of the underlying asset indicates con-

siderable variability. Hence, it is somewhat logical to consider non-constant volatility for

hedging purposes and for evaluating the fair value of derivatives. These considerations

have accelerated the development of stochastic volatility-oriented asset pricing models

where the non-constant volatility, along the asset price, is also modelled as a stochastic

process. (Kienitz and Wetterau, 2013, p. 54)

Heston (1993) introduced a stochastic volatility model along with a closed price solu-

tion for a European-style call option in a situation where the underlying asset price and

its volatility correlate with each other. In the Heston model volatility evolves stochasti-

cally over time and it complies with a mean reverting process suggesting the volatility will

eventually revert to the long-term mean value. By following Heston (1993), the diffusion

equation for the asset price of S at time t can be described the following way:

dSt = µStdt+
√
vtStdW

1
t . (3.20)

In comparison with the BS model the volatility is also assumed to follow a stochastic

process. This is known as the variance process and is usually referred to as the square-

root-process based on Feller (1951) and Cox et al. (1985). The variance of v can be

defined as follows:

dvt = κ(θ − vt)dt+ η
√
vtdW

2
t , (3.21)
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where κ represents the mean reversion speed of variance, θ is the long-term variance

and η implies the non-stochastic volatility of the variance process known as the volatility

of volatility. On top of that, W 1
t and W 2

t refer to the correlated Wiener processes with

correlation ρ > 0. This relationship can be given as follows:

Cov(dW 1
t , dW

2
t ) = ρdt. (3.22)

As highlighted by e.g. Mikhailov and Nögel (2004), there exists a condition for the variance

process referred to as a Feller constraint. The purpose of the constraint is to ensure

that the variance process will not reach zero. The Feller constraint can be described as

follows:

2κθ ≥ η2. (3.23)

However, applying the Feller constraint in connection with the Heston model has provoked

a critical discussion in the literature and many practitioners actually do not fully comply

with the constraint (e.g. Albrecher et al., 2007). Often the violation of the Feller constraint

is required to ensure a better fit with the market data especially for derivatives with a long

maturity.

In a similar fashion with the BS model, the Heston process need to be defined under the

risk-free probability measure. By following Fiorentini et al. (2002) the Heston model under

the risk-neutral probability measure can be described as follows:

dSt = rStdt+
√
vtStdW

∗1
t (3.24)

dvt = κ∗(θ − vt)dt+ η
√
vtdW

∗2
t (3.25)

Cov(dW ∗1
t , dW ∗2

t ) = ρdt, (3.26)

where κ and θ are replaced with risk-adjusted factors in the following manner: κ∗ = κ+λH
and θ∗ = κθ / (κ+ λH). As noted by Fiorentini et al. (2002), λH refers to the market price

of volatility that is needed to distinguish the physical probability measure from the risk

neutral one.

In a similar manner with the BS model, the Heston model can be also adjusted into a

more usable form by applying Itô’s lemma. By following Heston (1993), the price of the
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asset U = (S, v, t) can be given through the following partial equation:

1

2
vS2∂

2U

∂S2
+ρηvS

∂2U

∂S∂v
+
1

2
η2v

∂2U

∂v2
+rS

∂U

∂S
+{κ[θ−v(t)]−λHv}

∂U

∂v
−rU+

∂U

∂t
= 0.

(3.27)

As highlighted by Heston (1993), a European call option with the maturity time of T and

strike price K satisfies the above equation (3.27) through the following boundary condi-

tions:

U(S, v, t) = max(0, S −K)

U(0, v, t) = 0

∂U

∂S
(∞, v, t) = 1

rS
∂U

∂S
(S, 0, t) + κθ

∂U

∂v
(S, 0, t)− rU(S, 0, t) + Ut(S, 0, t) = 0

U(S,∞, t) = S.

(3.28)

The price of a European call option C can be obtained through the solution for the partial

differential equation (3.27). We can observe many similarities with the BS model, where

the corresponding PDE was solved by using the equation (3.16). Instead of using the

direct method, Heston (1993) provided a solution for the equation (3.27) by applying a

characteristic function. The solution can be defined as follows:

C(S0, K, v0, t, T ) = SP1 −Ke−(r−q)(T−t)P2, (3.29)

where P1 and P2 are two risk-neutralized probabilities. P1 refers to the delta of the Eu-

ropean call option whereas P2 implies the conditional risk neutral probability that the

underlying asset price of S will be greater than the strike price of K at the maturity of T .

Within this illustrative equation T − t refers to the time to maturity.

Based on Heston (1993) and Mikhailov and Nögel (2004) both probabilities of P1 and P2

can be derived numerically from the following integral equation for j = 1,2 as follows:

Pj =
1

2
+

1

π

∫︂ ∞

0

Re

[︃
e−iϕlnKφj(S0, v0, t, T, ϕ)

iϕ

]︃
dϕ. (3.30)

The numerically solution for the risk-neutralized probabilities of P1 and P2 are introduced

in more detail in Section 3.3. As proposed by Heston (1993), the solution for the charac-
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teristic functions of φ1 as well as φ2 can be given:

φj(S0, v0, τ, ϕ) = eCj(τ ;ϕ)+Dj(τ ;ϕ)vo+iϕS0 , (3.31)

where τ = T − t. Furthermore, the solutions for the unknown functions of Cj(τ ;ϕ) and

Dj(τ ;ϕ) can be referred to as follows:

Cj(τ ;ϕ) = (r − q)ϕiτ +
κθ

η2

{︃
(bj − ρηϕi+ d)τ − 2ln

[︃
1− gedτ

1− g

]︃}︃
(3.32)

and

Dj(τ ;ϕ) =
bj − ρηϕi+ d

η2

[︃
1− edτ

1− gedτ

]︃
(3.33)

including

g =
bj − ρηϕi+ d

bj − ρηϕi− d
(3.34)

d =
√︂

(ρηϕi− bj)2 − η2(2ujϕi− ϕ2, (3.35)

where u1 = 1
2
, u2 = −1

2
, a = κθ, b1 = κ+ λH − ρη and b2 = κ+ λH .

3.2 Jump diffusion models

Even though the diffusion models are rather widely used in option pricing, they do not

necessarily describe the movements of the underlying asset in a realistic way. As noted

by Kienitz and Wetterau (2013, p. 93) the diffusion models are not capable of modelling

the impacts of rare events such as defaults, crashes or credit events. More familiarly,

such rare events are referred to as jumps. In all its simplicity, a jump can occur if an

essential piece of information about a publicly listed company becomes available causing

an unexpected change in the company’s stock price (Cížek et al., 2005, p. 184).

Over the years, there have been proposed several pricing models that allow the occur-

rence of jumps. Within this thesis, we only deal with the diffusion models that have been

extended to capture discontinuous movements. These models are known as the jump

diffusion models consisting of the diffusion and jumping parts. As highlighted by Kienitz

and Wetterau (2013, p. 93), the jump diffusion models are usually conducted by adding

an uncorrelated compound Poisson process to the diffusion part.

A Poisson process can be considered as a certain stochastic process for a series of
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discrete events as noted by Iacus (2011, p. 109). It is recognized by its feature where the

exact timing of discrete events occurs randomly, but in turn, the average time between

the events is known. Furthermore, each event is independent and thus the previous

event does not impact on the current event. In general, there are several definitions for

the Poisson process in the literature, but according to Iacus (2011, p. 109), the process

can be illustrated as follows:

Nt = N(t) = N([0, t]), (3.36)

where Nt is a value of the process up to time t. The number of events between certain

time t is modelled as ∆Nt = Nt+∆t − Nt where t + ∆t is a small time-interval. The

Poisson process Nt follows a Poisson distribution if the following condition is satisfied:

P (Nt = k) = e−λt (λt)
k

k!
, k = 0, 1, 2..., (3.37)

where λ > 0 can be seen as the expected number of events during the time-interval. In

general, the Poisson distribution gives a probability of observing k events within a given

time-period. Driven by the Poisson process, the occurrences of jumps are included in the

pricing models through a compound Poisson process. The compound Poisson process

can be defined as follows:

Xt =
Nt∑︂
i=1

Yτi , (3.38)

where Nt is the Poisson process and Yτi refers to the jumps at random times τi, which

are independent and identically distributed random variables. (Iacus, 2011, p. 109-111)

3.2.1 Merton model

Merton (1976) introduced an early stage jump diffusion model which has proven to be an

important part of the further development of asset pricing models. The Merton model is

briefly illustrated below due to its strong relationship with the Bates model that has been

applied in the empirical part of this thesis.

To cope with sudden jumps in the price of the underlying asset, Merton (1976) suggested

a model which allows the discontinuous movements of asset prices. In all its simplicity,

the Merton model is an extended version of the Black-Scholes model by integrating the

jump term to the equation (3.8). By following Cížek et al. (2005, p. 184), the asset price



23

dynamic can be given as follows:

dSt = µStdt+ σStdWt + dZt, (3.39)

where Zt refers to the compound Poisson process with the log-normally distributed jump

sizes. The jumps comply with the Poisson process Nt with the jump intensity of λ. The

log-normally distributed jump sizes are identically distributed random variables, indepen-

dent of both the Wiener process and the Poisson process.

Corresponding with the Heston model and Black-Scholes model, the Merton model should

be adjusted with a risk neutral probability. As noted by Cížek et al. (2005, p. 185), the

Merton model can be referred to as an incomplete model, and thus there exists many

different ways to adopt the risk neutral probability. Driven by Merton (1976), the authors

of Cížek et al. (2005, p. 185) proposed only to adjust the drift µ of the Wiener process

and keep the other conditions unchanged. Thus, the price dynamic can be modelled in

the following manner:

St = S0e
µM t+σWt+

∑︁Nt
i=1 Yi , (3.40)

where µM = µ − σ2 − λe

(︂
µj+

δ2

2

)︂
−1. In this illustrative example, the log-jump sizes are

denoted by Yi with the mean of µj and variance δ2. Compared to the traditional Black-

Scholes model, the included jump components assign more weight to the tails of the

return distribution as concluded by Cížek et al. (2005, p. 185).

Based on Kienitz and Wetterau (2013, p. 96), the pricing of European options can be

completed either through the closed form solution of the characteristic function or by

using similar equations as presented with the Black-Scholes model (3.16 - 3.19). The

option pricing through the Merton model has been left out from this thesis. However,

more information about this subject can be found in Merton (1976), Kienitz and Wetterau

(2013, p. 96) and Cížek et al. (2005, p. 185).

3.2.2 Bates model

The Merton model and the Heston model were reconciled into the new model by Bates

(1996). The Bates model is practically an extension of the Heston model with an addi-

tional jump diffusion part in the price process. In a similar fashion with the Heston model,

the Bates model also assumes that the variance process is stochastic. Moreover, when

the model complies with the stochastic volatility, it is able to define smile and skew effects

of implied volatility. The dynamics of the Bates model have been briefly illustrated below

by following Bates (1996). Note that there might appear some minor denotation differ-
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ences compared to the Merton model introduced last section. Based on Bates (1996),

the dynamics can be given as follows:

dSt = (µ− λk)Stdt+
√
vtStdW

1
t + kdq (3.41)

dvt = κ(θ − vt)dt+ η
√
vtdW

2
t (3.42)

Cov(dW 1
t , dW

2
t ) = ρdt (3.43)

Prob(dq = 1) = λdt. (3.44)

These equations are mostly in line with the Heston model equations (3.20 - 3.22) with the

exception of the equation (3.41) including a jump diffusion part. The jump diffusion term

dq refers to a compound Poisson process with intensity λ and log normally distributed

jump sizes being independent of dW 1
t and dW 2

t . The equation of ln(1 + k) illustrates

the jump sizes being normally distributed and thus it can be described as ln(1 + k) ∼
N

(︁
ln(1 + k)− 1

2
δ2, δ2

)︁
, where k refers to the mean jump size.

Similar to the previously introduced models, the dynamics above should be defined under

a risk neutral probability measure to satisfy the risk neutral world. Based on Bates (1996),

the model dynamics with risk neutral probabilities can be given as follows:

dSt = (r − λ∗k
∗
)Stdt+

√
vtStdW

∗1
t + k∗dq∗ (3.45)

dvt = κ∗(θ∗ − vt)dt+ η
√
vtdW

∗2
t (3.46)

Cov(dW ∗1
t , dW ∗2

t ) = ρdt (3.47)

Prob(dq∗ = 1) = λ∗dt (3.48)

ln(1 + k∗) ∼ N

(︃
ln(1 + k

∗
)− 1

2
δ2, δ2

)︃
, (3.49)

where λ∗ and k
∗

refer to adjustments for the market price of jump risk as follows λ∗ =
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λ(1 + k) and k
∗
= k + δ2

1+k
. Moreover, the risk-adjusted factors of κ∗ and θ∗ comply with

the same conditions as defined with the risk adjusted Heston process.

When it comes to the price of a European call option, the price can be calculated in the

same way as was done with the Heston model. Driven by similarities with the Heston

model, the equations (3.29) and (3.30) are applicable also for the Bates model. However,

the difference in the pricing results is attributable to the different characteristic functions.

According to Bates (1996) and Sepp (2003), the characteristic function for the Bates

model can be determined in accordance with the following procedure:

φj(S0, v0, τ, ϕ) = eCj(τ ;ϕ)+Dj(τ ;ϕ)vo+iϕS0+τΛ(ϕ), (3.50)

where τ = T − t. The solutions for the unknown functions of Cj(τ ;ϕ) and Dj(τ ;ϕ)

correspond to equations of (3.32 - 3.35). In turn, Λ(ϕ) can be described as follows:

Λ(ϕ) = e(k+Ijδ
2/2)iϕ−δ2ϕ2/2+Ij(k+δ2/2) − 1− (iϕ+ Ij)(e

k+δ2/2 − 1), (3.51)

where Ij = uj +
1
2

and u1 = 1
2
, u2 = −1

2
.

3.3 Option pricing with the fast Fourier transform

In the previous sections, Heston (1993) and Bates (1996) asset pricing models and their

characteristic functions were explained. As mentioned previously, to define the price for

a European call option, equation (3.30) requires a numerical solution for the derivation of

P1 and P2. The solution can be derived, for example, by applying an approach based on

the Fourier transform or alternatively based on the fast Fourier transform (FFT) which has

been applied in this thesis. The option pricing through the FFT has been introduced by

Carr and Madan (1999).

As highlighted by Cížek et al. (2005, p. 188), the main idea of the FFT method is to define

an analytical expression for the Fourier transform of the option price and to calculate the

price through the Fourier inversion. The authors further noted that the FFT provides a

significant speed advantage making it a really practical tool in option pricing. However,

it should be noted that the FFT method assumes that the characteristic function of the

pricing model should be known and defined analytically before. The basic concept of the

FFT has been briefly illustrated below by following Carr and Madan (1999).

At first, the analytic expressions for the Fourier transform of a certain option price have

been defined. Suppose that the log of the strike price is denoted by k. Thus, CT (k) refers

to the expected value of a call option with the strike price of exp(k) and the maturity time

of T . In addition, sT implies the log price and the risk-neutral density of sT is referred to
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as qT (s). Within this illustrative example, the characteristic function of this density can be

given by:

ϕT (u) ≡
∫︂ ∞

−∞
eiusqT (s)ds. (3.52)

Furthermore, the initial call value of CT (k) can be written in the following manner:

CT (k) ≡
∫︂ ∞

k

e−rT (es − ek)qT (s)ds. (3.53)

As can be seen from above, the presented function is not square-integrable since CT (k)

tends to s0 and moreover k tends to −∞. To achieve a square-integrable function, the

modified call price of cT (k) is applied. This can be presented as follows:

cT (k) ≡ exp(αk)CT (k). (3.54)

The modified call price can be recognized as square-integrable for a suitable range of

α > 0. As a result of this, the Fourier transform of cT (k) can be now determined as

follows:

ψT (v) =

∫︂ ∞

−∞
eivkcT (k)dk. (3.55)

After that, the analytical expression for the Fourier transform of ψT (v) in terms of the

characteristic function of ϕT can be defined through the following procedure:

CT (k) =
exp(−αk)

2π

∫︂ ∞

−∞
e−ivkψT (v)dv =

exp(−αk)
π

∫︂ ∞

0

e−ivkψ(v)dv, (3.56)

where the statement for the Fourier transform of ψT (v) is given as follows:

ψT (v) =
e−rTϕT (v − (α2 + 1)i)

α2 + α− v2 + i(2α + 1)v
. (3.57)

Now, when the analytical expression for the Fourier transform has been defined above,

the call option price in terms of ψT (v) can be derived through the Fourier inversion. At

first, let’s provide a numerical solution for the integration (3.56) as an application of the

following sum equation for k = 1,...,N :

w(k) =
N∑︂
j=1

e−i 2π
N

(j−1)(k−1)x(j), (3.58)
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where N is typically considered as N2. The authors Carr and Madan (1999) especially

noted that the FFT offers a powerful algorithm to compute the given sum equation (3.58).

The speed advantage of the FFT approach is driven by the algorithm’s ability to reduce

the number of multiplications in the required N summations. Next, CT (k) based on the

equation (3.56) can be described through the sum equation (3.58) as follows:

CT (k) ≈
exp(−αk)

π

N∑︂
j=1

e−ivjkψT (vj)η, (3.59)

where vj = η(j − 1), j = 0, ..., N − 1, and η > 0 refers to the distance between the

points of integration grid.

Carr and Madan (1999) were mainly interested in at-the-money call option values ap-

pearing in the situation where k is near to zero. While the FFT returns N values of

k they suggested a regular spacing size of λ, and thus their values for k can be de-

scribed as ku = −b + λ(u − 1) for u = 1,...,N . This in turn indicates that the log

strike levels varying from −b to b where b = Nλ
2

. Furthermore, by substituting the equa-

tion of ku = −b + λ(u − 1) into equation (3.59) and considering previously introduced

vj = η(j − 1), the European call option price can be written as:

CT (ku) ≈
exp(−αku)

π

N∑︂
j=1

e−iλη(j−1)(u−1)eibvjψT (vj)η. (3.60)

When comparing the equation above (3.60) with the summation (3.58), the variable of λη

equals 2π
N

. Carr and Madan (1999) suggested to use comparatively large values for η to

end up with a more accurate integration result. For that purpose, the authors decided

to apply Simpson’s rule into their summation. Finally, the conclusive equation for the

European call option price can be written as follows:

C(ku) =
exp(−αku)

π

N∑︂
j=1

e−i 2π
N

(j−1)(u−1)eibvjψT (vj)
η

3
(3 + (−1)j − δj−1). (3.61)

Regardless of the easy implementation of Carr and Madan’s (1999) approach, there exists

several alternative approaches for pricing options by applying Fourier methods. Many of

these have similarities with the Carr and Madan (1999) method and, for example, Cont

and Tankov (2004, p. 366) proposed an alternative solution for the equation (3.54) by

considering the modified time value of the options as follows:

cT (k) = CT (k)−max(1− ek−rT , 0). (3.62)
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Instead of using an analytical approach (i.e Fourier transform methods), the option prices

can be obtained also through simulation techniques. Such a well-known simulation ap-

proach is referred to as the Monte Carlo simulation. The Monte Carlo simulation is applied

to model the probability of varying outcomes for a certain process occurring randomly. It

is a rather widely used approach in option pricing as instead of focusing on only the

European-style options, it is also capable of modelling a wider class of derivatives such

as exotic and path dependent options as noted by Cížek et al. (2005, p. 197) and Cont

and Tankov (2004, p. 179).

3.4 Implied volatility and implied volatility surfaces

A common way to define the volatility of the stock price of σ is to acquire some historical

asset pricing data and calculate its standard deviation to come up with an estimate of the

volatility. Another way is to define so-called implied volatility which refers to a forward-

looking expectation of volatility. It deviates from historical volatility in a way that it is not

concluded from known past returns of a security but rather it is based on the market’s

forecast of a likely movement in the security’s price. (Boyle and McDougall, 2019, p.

89-91)

In other words, implied volatilities correspond to the volatilities implied by option prices

observed in the market. In many cases implied volatility is parallel with the Black-Scholes

model which offers a convenient way to calculate the implied volatility by reverting the

process and using the option prices derived from somewhere else. That relationship has

been exemplified clearly by Zulfiqar and Gulzar (2021) as follows:

Cmarket = S0N (d1)−Ke−rTN (d2) , (3.63)

where

d1 =
ln (S0/K) +

(︂
r + ˆ︁σ2/2

)︂
Tˆ︁σ√T (3.64)

d2 = d1 − ˆ︁σ√T , (3.65)

where ˆ︁σ refers to the implied volatility that forces the market observed price to be equal

to the model call price.

It should be noted that implied volatility can be also obtained by applying other asset

pricing models, and thus the outcome is heavily dependent on the used model and its

assumptions. Moreover, there are many studies in the literature trying to define implied
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volatility with improved precision and accuracy. For example, Yan and Jianhui (2016)

and S. Liu et al. (2019) focus on describing implied volatility by using Neural Networks.

However, unless otherwise stated, in this thesis implied volatility is deducted through the

Black-Scholes model following the approach presented above.

As noted before, implied volatility provides useful information about the market’s estimate

of possible movements in a security’s price. Apart from that, implied volatility has often

been used to understand better the option dynamic by observing the behaviour of implied

volatility as a function of the strike price or moneyness. According to Hull (2012, p. 409)

this relationship for a particular maturity is often referred to as an implied volatility smile.

Empirical studies have shown that typically the shape of the function between implied

volatility and strike price resembles a semicircle (smile) or an oblique semicircle (skew).

For a given expiration, options whose strike price deviates significantly from the underlying

asset’s price contribute to higher prices for derivatives, and thus for implied volatilities.

(Boyle and McDougall, 2019, p. 127-129) Hence by graphing implied volatilities in terms of

strike prices for a particular maturity, it generates a smile or skew rather than the expected

flat surface, as would be seen in the Black-Scholes model (Cont and Da Fonseca, 2002).

As a matter of fact, since the BS model is not capable of modelling implied volatility

smiles (Boyle and McDougall, 2019, p. 127), it brings out another limitation of the BS

model which questions its applicability. Other limitations and drawbacks were discussed

in more detail in Section 3.1.1.

The relationship between implied volatility and option dynamics has usually been defined

through an implied volatility surface. Implied volatility surfaces are commonly illustrated

as a three-dimensional plot of maturity, strike (or moneyness) and implied volatility. By

following Cont and Da Fonseca’s (2002) research, the implied volatility surface at time t

can be given as a function below with the outputs of R+:

ˆ︁σt : (K,T ) −→ ˆ︁σt(K,T ), (3.66)

where ˆ︁σt(K,T ) refers to the implied volatility with a strike price K and maturity time T .

Typically, the formed surface is also evaluated from a smile or skew perspective.

Volatility surfaces also work the other way around. According to Cont and Da Fonseca

(2002), specifying the implied volatility surface at a given date provides an approximation

of prices for all (vanilla) options at that date. In other words, the volatility surface can

be applied to estimate the derivative’s unknown implied volatility as well as the monetary

price for the missing maturity-strike combinations. However, extrapolated figures should

always be used with caution. This is also supported by Rouah (2015, p. 40) who points out

that the extrapolation of the implied volatility surface beyond the known and observable

strikes may lead to arbitrary values.
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3.5 Selection of the models

According to Cao and Celik’s (2021) article, regardless of the popularity of cryptocurrency

derivatives, there is neither an accurate valuation framework to capture the complicated

behaviour of cryptocurrencies nor a means to establish the fair value of cryptocurrency

derivatives in a consistent fashion. This is also supported by Jalan et al. (2021) who argue

that it is not a simple task to summarize the valuation dynamics of bitcoin options driven

by the extreme volatile and uncertain behaviour, since the common principles of efficient

market and investor sentiments may not apply to cryptocurrency markets.

Despite the possible challenges encountered in bitcoin option pricing, there are some

studies on the topic. To mention a few of them, for example, Cretarola et al. (2020)

established a closed pricing formula for European-style bitcoin derivatives and Cao and

Celik (2021) proposed an analytical valuation model for bitcoin options that is based on

the modified Merton jump diffusion model (Section 3.2.1). Furthermore, Hou et al. (2020)

provided a way of pricing bitcoin options through the stochastic volatility with a correlated

jump model (known as SVCJ) (Duffie et al., 2000) and the stochastic volatility model with

a non-linearity structure (known as BR model) as suggested by Bandi and Renò (2016).

As mentioned before, the Heston model and the Bates model have been chosen to be

used within this thesis. Even though previous studies have given us valuable insights

on the valuation dynamics relating to bitcoin option pricing, we emphasized the simplicity

of the model over its capabilities to capture the uncertain behaviour of cryptocurrencies.

Since the main focus of this thesis relates to model calibrations, the most complex models

are excluded from the review in order to make the calibration efficient and fast enough.

Note that a model calibration process within the cryptocurrency context is still a relatively

understudied topic in the literature. Madan et al.’s (2019) research can be considered

as one of the few studies focusing purely on the model calibration from a cryptocurrency

perspective, thus it has been referred to several times in a later stage of the thesis. Also,

Teng and Härdle (2022) provided some insights about the SVCJ model calibration to

bitcoin options. However, since their study has been performed by following the inverse

options principles, it is not so relevant for the purpose of this thesis as mentioned in the

beginning of this chapter.

Driven by the absence of the jump diffusion parameters for the Heston model, it will be

interesting to observe how the final calibration results deviate between the Heston and

Bates models. Especially considering that the occurrence of jumps in the crypto markets

are rather typical as observed by Hou et al. (2020). All in all, since the fundamentals of

both models have been widely explored among practitioners, the literature is considered

to provide enough reliable information to evaluate and analyse the obtained results in a

coherent fashion.
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4. MODEL CALIBRATION

This chapter introduces the main features of a model calibration process, the Nelder-

Mead algorithm (Nelder and Mead, 1965) as well as standard errors and stabilities of

model parameters. Finally, the illustrative effects of changing parameters will be ex-

plained.

4.1 Model calibration process

Model calibration is a widely recognized procedure in statistical modelling which is neither

restricted to any particular type of model nor to a specific industry. Model calibration can

thus be encountered in numerous contexts. Judd and Judd (2011, p. 252) define the

model calibration process as finding a unique set of model parameters that provides a

sufficient description of the system behaviour, and can be achieved by confronting model

predictions with actual measurements performed on the system or model.

From a financial perspective, a model calibration refers to a process of fitting an asset

pricing model to market data by optimizing the model parameters in a way that those

model prices replicate as closely as possible with the market prices, write Büchel et al.

(2022). The model calibration process has had a remarkable role in the development of

advanced pricing models, as newly structured finance solutions and more complicated

derivatives have constantly been granted in the markets. The more accurate the calibra-

tion results are, the more valid the predictability of a pricing model is, which in the best

case can lead to a high-value tool from a portfolio and risk management perspective.

The calibration process commonly starts with the identification of a loss function to be

minimized. Rouah (2015, p. 116-118) highlighted in his book that there are a lot of

different ways to establish a loss function, but fairly often they fall into two main categories.

The first category focuses on those that minimize the error between quoted and model

prices, whereas the second category minimizes the error between quoted and model

implied volatilities. Typically these errors are determined as the squared, absolute or

relative difference between the quoted and the model prices or volatilities. According

to Escobar and Gschnaidtner (2016), the applied loss function contributes a lot to the

calibration outcomes.
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By following Rouah (2015, p. 116-117), widely used loss functions to define the mean

squared errors (MSE) between the market quotes and model prices or model implied

volatilities can be given in the following manner:

MSE =
1

N

∑︂
T,K

(CTK − CΘ
TK)

2 (4.1)

IV −MSE =
1

N

∑︂
T,K

(IVTK − IV Θ
TK)

2, (4.2)

where CTK and IVTK refer to quoted prices and quoted implied volatilities with a given

maturity time T and strike K. Hence, CΘ
TK and IV Θ

TK imply model prices and model

implied volatilities. Apart from that, N represents the number of quotes. The application

of the MSE loss function assigns relatively more weight on expensive options, such as

options within in-the-money position and those with a long maturity. Instead, the IV-MSE

loss function allocates approximately equal weight to options regardless of the money-

ness level since the calculated implied volatilities end up at a similar magnitude compared

to the quoted implied volatilities.

Sometimes MSE-based loss functions are replaced by root mean squared error loss func-

tions (RMSE) as they can be directly interpreted in terms of measurement units. In the

literature, you can come across different definitions, but practically RMSE is computed by

taking the square root of MSE. Kienitz and Wetterau (2013, p. 435), have illustrated the

RMSE-based loss function the following way:

RMSE =
1√
N

√︄∑︂
T,K

(CTK − CΘ
TK)

2, (4.3)

where CTK and CΘ
TK refer to quoted and model prices for each maturity-strike combina-

tion in the same way as in the equation (4.1).

Quoted market prices applied in the calibration usually depend on data availability, and

of course, the purpose of which the calibration procedure has been designed for. In

general, quoted prices tend to correspond to certain types of mid prices, such as the

average between the available bid and ask prices. However, sometimes the required

quoted prices are not available at all, or they can be obtained just for a given maturity-

strike combination. This offers a possibility to perform a calibration through the quoted

implied volatilities instead of the quoted prices. In fact, the applicability of the model is

typically evaluated by comparing model and quoted implied volatilities because options

are usually quoted in terms of implied volatility as argued by Rouah (2015, p. 117).

In terms of a decent calibration outcome, the liquidity of the applied options should be
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considered carefully since illiquid options may lead to distorted calibration results (Sayer

and Wenzel, 2015). Liquidity of a financial instrument refers to how easily an instrument

can be traded without impacting its current market price (Verousis et al., 2016). Therefore,

liquid options can be sold or bought more likely at a fair market price. In this thesis

the model calibrations have been carried out by applying vanilla options, which usually

reflect relatively good liquidity in a general manner. However, this is not guaranteed in

the cryptocurrency context since crypto markets have not proven to be as liquid as more

established asset classes according to Alexander, Heck, et al. (2022).

The lack of liquidity between the options is usually covered by assigning different weights

to the loss function. Based on Sayer and Wenzel’s (2015) article, the weights are in many

occasions set in a way that they emphasize the liquidity of the instrument by giving rela-

tively more weight to frequently traded instruments. However, there is not one right way

as to which weighting should be chosen and as stated by Rouah (2015, p. 117) the choice

of the weights is usually very subjective. As an example can be taken Christoffersen et al.

(2009) who utilized a widely known approach called BS-vega where the squared BS-vega

has been used as weight. By following Rouah (2015, p. 117), the BS-vega loss function

can be presented as follows:

V ega−MSE =
1

N

∑︂
T,K

(CTK − CΘ
TK)

2

BSvega2TK

, (4.4)

where BS-vega represents the sensitivity of the option price in terms of the quoted implied

volatility IVTK .

Although the importance of loss functions has been studied widely in the literature, such

as in papers of Bams et al. (2009) and Escobar and Gschnaidtner (2016), there is no

simple consensus as to which loss function should be chosen (Rouah, 2015, p. 117).

Within this thesis the IV-MSE loss function (4.2) has been selected. Because this thesis

also focuses on what kind of implied volatility surfaces European-style bitcoin call options

develop, the IV-MSE loss function serves the purpose best.

When the loss function has been identified, the next phase focuses on finding a rea-

sonable optimization algorithm to minimize the loss function. Similar to the loss function

selection, there is no a simple consensus as to which optimization algorithm or method

should be chosen. Pachamanova and Fabozzi (2010, p. 144) summarize in their book

that the increase in computational power during the past 20 years has resulted in rela-

tively systematic and accurate algorithms and practical software for solving optimization

problems of many kinds.

To end up with satisfied optimization results, the optimization problem may be constrained

for a specific purpose according to the true nature of the optimization problem, param-
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eters or loss function. These kinds of optimizations are referred to as constrained opti-

mization problems. In turn, optimization problems with no constrains can be referred to

as unconstrained problems. (Pachamanova and Fabozzi, 2010, p. 144) In this thesis, the

optimization problem is constrained as the pricing models to be calibrated impose some

constrains on their parameters. Sometimes the optimization can also be constrained

through a penalty term as proposed by Sayer and Wenzel (2015). The penalty term is

commonly defined as the difference between the calibrated parameters and some prear-

ranged parameters and its main purpose is to stabilize the calibration (Sayer and Wenzel,

2015). On the other hand, it can manipulate the calibration results if the behaviour of the

underlying asset tends to be rather unstable.

A function can have many minimum points, in which case the global minimum is the

"most" minimum point for the function, whereas the local minimum represents the other

minimum points. With respect to the most complex loss functions, the shape of the func-

tion can be unknown, and thus it may be a bit risky to apply a local optimization algorithm.

However, finding a global optimal solution can be rather difficult and time consuming.

(Pachamanova and Fabozzi, 2010, p. 147-148) Although the most classical optimization

algorithms are only capable of finding local optima, in practice they tend to work reason-

ably well for such a function without too many minimum points. It should be noted that the

local optimizer requires proper initial values as highlighted by Escobar and Gschnaidtner

(2016). In this thesis the Nelder-Mead optimization algorithm has been applied. Please

refer to Section 4.2 for details.

Even if the calibrated asset pricing model can perfectly match the obtained results to the

market data, it does not necessarily mean that the calibrated parameters are reliable or

that the selected model can capture an asset’s real movements in the long run. As stated

by Escobar and Gschnaidtner (2016), the obtained parameters rarely represent so-called

true parameters that would immediately be suitable in future option pricing. The cali-

bration process always involves some degree of risk, and as Escobar and Gschnaidtner

(2016) remarked, most of the risk factors driving overall calibration results can be divided

into model risks and calibration risks.

Based on Yu et al. (2018), model risk represents a source of risk being attributable to

incorrect models and overall model misuse. In other words, even though the calibration is

carried out as correctly and rationally as possible, the wrong model or its misuse can lead

to unreliable outcomes. This is also referred to as model uncertainty (Cont, 2006). On

the contrary, calibration risk includes all other calibration aspects, such as choosing an

optimization algorithm, error function and initial parameters. These risk factors should be

always critically evaluated before the obtained true parameters are used in future option

pricing. (Escobar and Gschnaidtner, 2016)
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4.2 Nelder-Mead optimization algorithm

In this thesis, the Nelder-Mead optimization algorithm has been applied. It is a widely

known numerical method to find the minimum or maximum point of a multidimensional

objective function and it was originally illustrated by Nelder and Mead (1965).

The algorithm follows a direct search method without using any derivative-related ap-

proach. In other words, the functionality of the method is attributable to whether the new

value leads to a better result than the previous value. (Lagarias et al., 1998) As described

by Nelder and Mead (1965), the algorithm applies a simplex consisting of n + 1 vertices

as starting values within n dimensions. Below is provided a simple example of how the

algorithm works by following Lagarias et al.’s (1998) article. The main steps of the method

are (i) order, (ii) reflect, (iii) expand, (iv) contract and (v) shrink. These are illustrated in

Figure 4.1.

Let’s consider a simple function of g(x, y) to be minimized. Since our function is a two-

dimensional function, a simplex of a triangle including 3 vertices is needed. At first, three

points have to be selected of a, b and c in 2D to build up our simplex and evaluate the

value of the function g at those three points and order them according to the function’s

value. Since this is only an illustrative example, it can be assumed that the points are

arranged as follows:

g(a) < g(b) < g(c). (4.5)

After this, the worst point of c is reflected through the centroid of other points of a and

b and thus we obtain a reflected point of d. On top of that, the value of the function

g is evaluated at point d in the same way as before. If the outcome of the function at

the reflected point g(d) performs better than g(b) but worse than g(a), the previously

considered worst point of c is replaced with d.

However, if g(d) provides a better outcome in comparison to both g(a) and g(b), the

iteration continues to an extension phase. As a result of this, the reflected point of d

is expanded even further from the centroid becoming an expanded point of e. After

the expansion, if the outcome of the function at the expanded point g(e) is even better

compared to the reflected point of g(d), the previously considered worst point of c will be

replaced with e instead of the reflected point d. However, if the expanded point does not

lead to better outcomes, the worst point of c is replaced with d as originally intended.

Moreover, if neither the reflected phase nor the expanded phase are satisfied, it is rather

useless to try to enhance the simplex through the reflected point d since the point itself

performs worse than the starting points of a and b. Therefore, the worst point of c is

contracted into two points of ca and cb along the reflected line. The point ca is called an
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inside contracted point between c and d, whereas cb is called an outside contracted point

between c and d. Similar to previous phases, the value of the function g is evaluated at

points ca and cb. If either of these contracted points lead to better results than g(b), the

worst point of c is then replaced with a better performing point of ca or cb.

Finally, if neither of the contracted points of ca nor cb lead to better outcomes than b, then

the simplex is shrunk towards the best performing point of a. This is well illustrated in

Figure 4.1 where the points c and b are replaced by cnew and bnew.

The outcomes of a local optimization algorithm depend strongly on the initial parame-

ters as noted by Escobar and Gschnaidtner (2016). The choice of initial parameters is

illustrated in more detail within Section 5.5.

4.3 Standard error and stability of the parameters

Parameters obtained through a calibration process can be quite unique for a given under-

lying asset at a given time even if the parameter-specific restrictions are properly consid-

ered. Especially, if market conditions fluctuate widely during the selected review period,

the true parameters may experience rather heavy variation as argued by Escobar and

Gschnaidtner (2016). Thus it may be difficult to estimate what the true parameters should

look like for absolute terms. We note that there are several approaches to estimate pa-

rameters’ behaviour in the literature, but in this thesis, we compose an understanding of

how relevant and valid the true parameters are by observing their (i) standard errors and

(ii) stability over time, as suggested by Kienitz and Wetterau (2013, p. 511).

Parameters’ standard errors imply how sensitive the calibration results are to changes

in the model parameters. Furthermore, this can also be considered rather useful from

a statistical analysis perspective since standard errors are needed when calculating t-

values. A brief description of how standard errors of parameters are calculated in this

thesis is presented below.

First of all, let us define the function f obtained as a result of the calibrations as follows:

f =
1

N

∑︂
i

(ŷ(i)− y(i,Θ))2, (4.6)

where ŷ(i) refers to the quoted implied volatilities and y(i,Θ) refers accordingly to the

model implied volatilities for the parameters of Θ. Note that Θ can represent either Heston

or Bates parameters depending on whether the standard errors are calculated with the

Heston model or Bates model. The model implied volatilities are defined as gi = y(i,Θ)

where gi refers to the ith element of the model output.

Moreover, since the standard errors for each parameter are derived through a covariance
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(a) Step 1: Order (b) Step 2: Reflect

(c) Step 3: Expand (d) Step 4: Contract

(e) Step 5: Shrink

Figure 4.1. An illustrative example of the Nelder-Mead method with a two-dimensional
function (Lagarias et al., 1998).
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matrix, let’s define the covariance matrix Σ in following manner:

Σ = σ̂2(J ′J)−1, (4.7)

where σ̂2 equals to f
N−p

in which N means the number of options whereas p refers to the

number of parameters. At same time, J refers to the Jacobian matrix (often referred to as

Jacobian) representing a matrix that collects all first-order partial derivatives of a function

with multiple variables. Within this case, the entry of Jij for the Jacobian matrix can be

descried as Jij = ∂gi
∂Θj

where Θj means the jth element in a set of model parameters

(either Heston or Bates). By following Simon and Blume (1994, p. 325), this can be

illustrated explicitly as follows:

J =

⎡⎢⎢⎢⎣
∂g1
∂Θ1

· · · ∂g1
∂Θn

...
. . .

...
∂gm
∂Θ1

· · · ∂gm
∂Θn

⎤⎥⎥⎥⎦ . (4.8)

Finally, the standard error for each parameter i can be defined by the following equation:

SEi =
√︁
Diag(Σii). (4.9)

Conclusively, the smaller the standard error, the more significant is the impact on the

calibration results. This helps us to estimate how reliably we can use the obtained param-

eters.

When it comes to the stability, Kienitz and Wetterau (2013, p. 511) introduce a couple of

different measures to estimate the parameters stability over time. In this thesis, a relative

mean measure was used focusing on an average of parameters’ relative daily changes.

This is given as follows:

MR =
1

(N − 1)

N∑︂
i=2

Θti −Θti−1

Θti−1

, (4.10)

where Θti denotes a certain model parameter calibrated at time ti.

4.4 Qualitative effects of changing parameters

Before proceeding with empirical considerations, this section has a brief look at what

the changes in parameters actually mean. This part illustrates how changing the model

parameters affects the shape of the implied volatility smile and skew by following Cížek
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et al. (2005, p. 171-173). As highlighted in Section 3.4, the implied volatility smile refers

to the implied volatility as a function of the strike price or moneyness for a given maturity.

At first, the effects of changing the volatility of volatility of η is evaluated. By adjusting

η being equal to zero, the variance turns into a deterministic process, and thus volatility

does not include any smile resulting in a flat smile curve. On the contrary, by increasing

the volatility of volatility it accelerates the convexity of the smile impacting on its steep-

ness. When it comes to the other volatility-basis parameter, initial variance v0, it produces

a somewhat different impact on the volatility smile. Changes in v0 concern the height of

the smile more than the shape.

With regards to the long-term variance θ, the effects of changing the parameter (ceteris

paribus) are somewhat similar in comparison with those observed by changing the initial

variance v0. In other words, the changes in θ also impact on the height of the smile rather

than the shape. Associated with the mean reversion speed of variance κ, the changes

are conversely related to the steepness of the smile affecting more the ATM part than the

high ends of the curve. On top of that, increasing the mean reversion simultaneously lifts

the centre.

While looking at the influence of the correlation ρ, the uncorrelated relationship (ρ = 0)

provides a fit that reminds of an almost symmetric smile with a centre point near ATM.

Consequently, by changing ρ the degree of symmetry changes. In other words, ρ defines

the skewness of the volatility smile.

According to Kienitz and Wetterau (2013, p. 103), by combining the Heston model with

a jump diffusion part, the jump diffusion parameters impact more on the short end of the

implied volatility smile. They also argue that increases in the mean jump size of k shift

the skew to the right, whereas decreases push the whole skew more to the left. On the

contrary, the changes in the standard error of the jump size δ impact on the height of

the smile. Practically, increasing δ lifts the smile and the whole implied volatility surface

upwards, and vice versa. When it comes to the jump intensity λ, the changes result in a

nearly equivalent shift of the whole surface.

Overall, model parameters can have similar effects on the implied volatility smile and thus,

from an efficient calibration perspective, some parameters can be thought to be fixed and

only calibrate the remaining parameters. As proposed by Cížek et al. (2005, p. 171-173),

the effects driven by the increases in the mean reversion speed of variance κ are usually

compensated by consequently higher values for the volatility of volatility η. A similar type

of relationship can be observed with the initial and long-term variance of v0 and θ. In

some cases it appears to be reasonable to select the fixed v0 in advance and only let the

long-term variance differ. Moreover, fixing certain parameters has proven to be useful in

the testing phase before the actual calibrations as demonstrated by Kienitz and Wetterau

(2013, p. 509) in their calibrations.
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5. RESEARCH METHODOLOGY AND DATA

This chapter gives a brief introduction to the research process used in this thesis. In

addition, the applied dataset, the main assumptions of the empirical part and the consid-

erations about the reliability and validity of the results will be elaborated here.

5.1 Research process

The purpose of this master’s thesis is to conduct a calibration of asset pricing models to

the European-style call options, which use the bitcoin as an underlying asset. Further-

more, this thesis aims to cover the following research questions keeping the main focus

on the latter one. Firstly, what kind of implied volatility surfaces do European-style bitcoin

call options develop, and how do those change across the review period. Secondly, what

kind of parameters and mean squared errors are obtained when the Heston and Bates

asset pricing models are calibrated against quoted implied volatility surfaces, and how do

those parameters and mean squared errors develop throughout the review period.

This thesis uses a quantitative research design by acquiring, processing as well as analysing

a numerical data set. According to Saunders et al. (2019, p. 175-176), quantitative re-

search is often associated with generating or using numerical data, and in many cases

quantitative research can be seen as a deductive approach where data is collected and

analysed to test, for example, a theory or hypothesis.

A research process was defined as a part of the background work. The research pro-

cess consisted of several smaller steps which together helped to build a clear guideline

for this thesis. At first, it was determined what the goals of the study are. Connected to

that, research questions were defined. Secondly, empirical data applied in the thesis was

acquired and processed to be in a more usable form. Thirdly, all necessary programming

was implemented and tested for building the implied volatility surfaces and model calibra-

tions. After this the implied volatility surfaces within the review period were established

and the Heston and Bates models were calibrated. Finally, the empirical results were

gathered and analysed.
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5.2 Data

The empirical part of this thesis is based on data acquired from the Deribit cryptocur-

rency derivative exchange through the application programming interface (API). Deribit

is a Netherland-based trading platform founded in 2016, making it one of the oldest ex-

changes for trading cryptocurrency derivatives. Deribit is a widely used exchange whose

listed products include amongst others bitcoin (BTC) and ethereum (ETC) options and

futures.

According to Hoang and Baur (2020), Deribit is the first platform in the world offering BTC

options although other kind of BTC derivatives, such as futures and perpetuals contracts,

had been traded on other exchanges before the foundation of Deribit (e.g. BitMEX that

was founded in 2014). Moreover, they noted that Deribit can be currently considered one

of the largest crypto derivative exchanges in terms of daily trading volumes.

Bitcoin options traded by Deribit are European-style and hence they can be only exercised

at the expiry. Furthermore, option contrasts can be traded 24/7 and they expire on each

Friday at 08:00 UTC. Based on discussions with Deribit’s support department they do not

provide historical data for their instruments. However, it is possible to acquire a snapshot

of quotes on any traded instruments through Deribit’s API. Such a snapshot provides a

wide range of information including e.g. bid and ask prices, volumes, open interests as

well as underlying asset prices.

Starting on the 30thof September 2021 at 22:53:45 UTC the applied BTC option data

(snapshot) was downloaded within approximately every 60 minutes until the 31st of Oc-

tober 2021 at 21:47:23 UTC. One snapshot included several option contracts involving

both European-style call and put options. Each option contract was defined as a certain

underlying-maturity-strike-option type combination (e.g. BTC-2JUL21-42000-C). It should

be noted that there were some inconsistent snapshots and timestamps without any data.

However, these had no effect in terms of the final result of the empirical part.

5.3 Data processing

While the BTC data was acquired, it was at the same time pre-processed including the

following steps: (i) data was transformed into a mat file, (ii) underlying-maturity-strike-

option type strings were separated from each other, (iii) creation timestamps as well as

maturities were converted from the unix timestamps to UTCs and (iv) irrelevant informa-

tion was excluded. Driven by the pre-processing phase, the remaining variables can be

seen in Table 5.1 below.

After pre-processing was completed, the option prices (ask, bid and mark prices) were

converted to US dollars since the downloaded option prices were initially denominated
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Table 5.1. Variables involved in the BTC data after the pre-processing phase.

Variable Description

AskPrice The ask price of the BTC option

BidPrice The bid price of the BTC option

MarkPrice The current value of the BTC option as calculated by Deribit risk
management

Maturity The expiration date and time of the BTC option

OptionType Describing whether the BTC option is put or call

TimeStamp The creation timestamp for the data snapshot

TimeToMaturity The length of time until the option contract expires

UnderlyingPrice The underlying price of bitcoin

in BTCs. The conversion was performed by applying the underlying BTC prices as they

were denominated in US dollars. It should be noted that the underlying price might vary

between different option contracts in the same timestamp. The prices for each option

are determined through the order book process, while the actual time stamps for each

option are determined according to buy and sell orders that investors have made for a

particular security. Therefore, the creation timestamp for observations (different options

in the timestamps) deviates from the actual timestamps leading to different underlying

prices.

The downloaded BTC data from Deribit did not contain risk-free rates which are needed

in implied volatility calculations as well as option pricing. For this thesis, risk-free rates are

based on short-term US government debt obligations (Treasury Bills, T-Bills). Since the

United Sates is an AAA-rated country and the underlying and option prices have been

converted into US dollars, applying Treasury Bills as a proxy for risk-free rates can be

considered reasonable.

The applied Treasury Bill data is based on the Federal Reserve Economic Data (FRED)

offering a wide range of data series and tools. The downloaded Treasury Bill data involved

daily spot rates across the review period from the 30th of September to the 31st of October

2021 with a maturity of (i) 4 weeks, (ii) 3 months, (iii) 6 months as well as (iv) 12 months.

Based on those maturities, the corresponding risk-free rate was defined for each BTC

option contract in terms of the option’s maturity date. Furthermore, all the snapshots

within the same daily timestamp used the corresponding daily Treasury Bill spot rate.

If the time to maturity of the option was less than 30 days, a Treasury Bill rate with a

maturity of one month was used as a risk-free rate. When the option’s time to maturity was

between 30 days and 90 days, the applied Treasury Bill rate was derived through linear

interpolation between maturities of 4 weeks and 3 months. Similar linear interpolation

was used for the options with time to maturities between 90 days and 180 days as well as
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between 180 days and 360 days. For those options with a maturity being more than 360

days, a Treasury Bill rate of one year was applied.

The acquired BTC data involved also European-style put options. Since both implied

volatility surfaces and model calibrations in this thesis are based on European-style call

options, each of the put option prices was converted into call option prices by applying

a put-call parity - equation. Put-call parity describes the relationship between put and

call options and was introduced by Stoll (1969). The theory states that the price of a put

option indicates the fair value for a corresponding call option if that call option has the

same strike price, underlying price and maturity. This theory applies both ways and in

practice it defines the three-sided connection between puts, calls as well as underlying

assets. The general form of the equation is given below:

Ct +Ke−rT = Pt + St, (5.1)

where Ct and Pt refer to prices for a call option and put option. Moreover, St represents

an underlying asset price, r is a risk-free rate while K and T model option’s strike price

and time to maturity, respectively.

After converting put options to call options, the options were revised for possible arbi-

trages. Similar to Section 3.1.1, some boundary conditions were considered to limit the

acceptable price of the derivative. Firstly, the equation of Ct < St was applied, because

the European-style call option to buy a share of security cannot be more valuable than

the fair value of the share. Secondly, the equation of Ct > max(St − Ke−rT , 0) was

applied to verify that if there are no dividends prior to expiration, the European-style call

price should never fall below zero.

While each option was reviewed for possible arbitrages, the implied volatilities based on

market data were calculated through the Black-Scholes model. As referred to in Section

3.4 the Black-Scholes model offers a convenient way to calculate the implied volatility by

using the option prices derived from somewhere else. In this thesis, MarkPrice - variables

were applied as a proxy for those BTC option prices quoted in the market. The implied

volatilities based on market data were calculated by solving σ̂ using equations (3.63 -

3.65).

As a final part of the data processing, the BTC data was filtered by removing all the

options that (i) led to arbitrage or (ii) ended up in either an infinity value or NaN value

after converting the monetary call price into the implied volatility. Apart from those, some

maturity and moneyness restrictions were applied to improve comparability between the

different data snapshots. As a result, one snapshot typically consisted of approximately

300 to 400 different BTC option contracts with maturities ranging from less than one

month up to almost one year.
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5.4 Implied volatility surface derivation

The construction of IV-surfaces is based on the processed data introduced in Section

5.3. Since the data was acquired approximately every 60 minutes, there were quite many

snapshots in total. Thus the implied volatility surfaces in this thesis were established by

applying a snapshot every 24 hours as far as it was possible. As already mentioned, there

were some inconsistent snapshots and timestamps during the review period, but those

did not have a major impact on the final results.

Moreover, it should be noted that the number of BTC options in the snapshots may de-

viate across the review period. This is mainly driven by the expiration of some options

and may cause issues from a comparability perspective. Therefore the IV-surfaces were

established with a constant grid (maturity and moneyness).

In the constant grid, maturity remained between one month and ten months, whereas the

lower limit of moneyness (S/K) was 0.5 and the upper limit was 2.0. However, if a data

snapshot did not meet the selected maturity and moneyness restrictions, the constant

grid was adapted according to the snapshot. In these cases, the new constant grid was

based on the lowest and highest maturity and moneyness of the processed data for a

given snapshot.

IV-surfaces in this thesis were based on interpolation. For that purpose, a query grid

(query points) was created at first, based on the constant grid restrictions (selected ma-

turity and moneyness) for a given snapshot. After this, Matlab’s ready-to-use Volatility-

Surface.m code library was used in which the processed data of (i) time to maturity (ii)

moneyness and (iii) implied volatility was adjusted to a more usable form. To end up with

a more consistent and interpretable volatility surface, implied volatility was also smoothed

by applying Gaussian kernel smoothing. Finally, an implied volatility surface for a given

snapshot was interpolated over a defined grid using linear interpolation.

5.5 Model calibration derivation

Similar to the implied volatility surface derivation, the same processed data and same

range of snapshots (every 24 hours) were applied as a background for the model calibra-

tions. As referred previously, the Heston and Bates asset pricing models are calibrated by

using implied volatilities of the BTC options instead of monetary market prices. Therefore,

the IV-based loss function (4.2) was used in this thesis. None of weights was used in the

loss function since the IV-MSE allocates approximately equal weight to options regard-

less of the moneyness level. Note that if NaN values existed when calculating the model

implied volatilities, they were converted to be equal to 1.

With regards to the optimization, the Nelder-Mead algorithm was selected to be applied
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in this thesis (please refer to Section 4.2). In Matlab, a fminsearch - function represents

the Nelder-Mead approach attempting to find a minimum x of the specified function using

derivative-free method. Since the fminsearch - function is capable of finding a minimum

of a multivariable function, it was considered suitable for calibrating the Heston and Bates

asset pricing models.

Given that in some cases optimization can be a rather long and unclear process, some

settings and restrictions were set for the Nelder-Mead algorithm. However, it should be

noted that there is not a simple consensus as to which of the optimization settings and

restrictions should be used. With regards to this thesis, the applied settings are given in

Table 5.2 below.

Table 5.2. Optimization settings and restrictions.

Setting Description

MaxFunEvals = 1600 Maximum number of function evaluations allowed

MaxIter = 1600 Maximum number of iterations allowed

TolFun = 1e-4 Termination tolerance on the function value

TolX = 1e-4 Termination tolerance on x

FunValCheck = ’on’ Check whether objective function values are valid. ’on’ dis-
plays an error when the objective function returns a value that
is complex or NaN

As noted previously, the Heston and Bates models were calibrated to BTC snapshot data

at 24-hour intervals. For calculating option prices, both pricing models were based on

Kienitz and Wetterau’s (2012) ready-to-use programming libraries. The authors gave

a numerical solution for the equation (3.30) through the fast Fourier transform method

based on Carr and Madan’s (1999) approach (see Section 3.3 for details).

With regards to optimization, it should be noted that the solutions of the local optimization

algorithm depend strongly on the initial parameters. As stated by Rouah (2015, p. 123)

and Escobar and Gschnaidtner (2016), the selected initial parameters should not be too

far from the true parameters obtained as a result of the calibration. For the first calibration

rounds of both models, eight sets of different parameters were randomly generated. The

parameters that provided the smallest value for the loss function (IV-MSE) were chosen

as starting values for the first calibration rounds. Furthermore, from the second calibra-

tion onwards, previously calibrated parameters were used as starting values for the next

calibration. Even though parameters can have similar effects to a volatility smile, each

parameter was included in the calibration instead of fixing some parameters and only

calibrating the remaining parameters as suggested by Cížek et al. (2005, p. 171-173).

The applied restrictions of calibrated parameters were mostly the same for both models,

with the exception of the jump diffusion parameters that were only characteristic for the
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Bates model. The models themselves imposed some constrains on those parameters,

an example of which is the correlation ρ that is only allowed to vary between -1 and 1.

Moreover, the volatility and variance related parameters such as (i) long-term variance

θ, (ii) volatility of volatility η, (iii) initial variance v0 as well as (iv) standard deviation of

the jump size δ were limited to be positive. Since the standard deviation is the square

root of variance, it is always non-negative. With respect to other parameters, several test

calibrations were performed to get some guidelines for the restrictions. Based on the

testing phase it was noticed that the jump intensity λ varies quite a lot, so no upper limit

was set for that parameter. The restrictions applied in this thesis can be found in Table

5.3 below.

Table 5.3. Parameter restrictions.

Parameter Lower boundary Upper boundary

Mean reversion speed of variance, κ 0.5 35

Long-term variance, θ 0.012 2.5

Volatility of volatility, η 0.012 25

Correlation, ρ −1 1

Initial variance, v0 0.012 2

Mean jump size, k −1.5 1.5

Standard deviation of the jump size, δ 0 1

Jump intensity, λ 0 ∞

It should be noted that the Feller constraint (3.23) was excluded from the analysis to

improve the fit between the model prices and the market quotes especially for BTC options

with a long maturity. Background of the Feller constraint was presented in more detail in

Section 3.1.2.

In association with the model calibrations, the stability of each parameter was assessed

by using the relative mean measure (4.10). Furthermore, the standard errors for each

parameter were calculated in order to be able to analyse better how sensitive the results

obtained from calibrations are to changes in model parameters. The standard error calcu-

lations were performed through the Jacobian matrix which has been introduced in more

detail in Section 4.3. It should be noted that if the Jacobian matrix produced NaN val-

ues, they were converted to 0. Since each of the calibrated values of the jump diffusion

parameter δ were so close to zero, the singular values had to be modified to ensure the

Jacobian matrix did not turn into a singular matrix. Therefore the calculated standard

errors of δ did not represent valid values.
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5.6 Reliability and validity of the results

One considerable part of the research process is to assess the quality of the results.

There are several measures of qualities in a quantitative study, but in this thesis the focus

was set on reliability and validity.

Both of those measures have multiple definitions and extensions in literature, for instance,

Saunders et al. (2019, p. 213) have described reliability and validity as follows. Reliabil-

ity represents the replication and consistency of the research. In other words, whether

the results can be replicated under the same conditions. In turn, validity represents the

appropriateness of the measures applied, accuracy of the analysis of the results as well

as generalisability of the findings. Meaning whether the received results really represent

what they are intended to measure.

In this thesis, reliability was reflected by complying with a consistent and efficient program-

ming road map for obtaining the results. The repeatability of the results was improved by

making the programming as dynamic as possible without including unnecessary manual

inputs. However, when it came to the provided calibrations the optimization algorithm had

an essential role in terms of the results obtained, and thus even a small change in pa-

rameter restrictions or optimization settings could have led to inconsistent results. Since

both models were calibrated applying BTC data from a certain time frame, the calibrations

would lead to different results if the applied data set was based on another time frame.

From a validity perspective, some testing calibrations were performed by applying ran-

domly selected option combinations (not more than 10 options) to ensure that the opti-

mization was working correctly. Additionally, validity aspects were considered also within

the implied volatility surfaces. By following the observations from the literature introduced

in Section 4.4, it was verified whether changes in the Heston and Bates’s parameters

impact the IV-surfaces in the way they were supposed to.

All in all the study consisted of a constant effort to ensure the quality of the results. As

mentioned previously the results were rather sensitive to changes in the main assump-

tions. Therefore, instead of blindly relying on the obtained findings, it is recommended to

perform calibrations and IV-surface derivations again if there were to arise any changes

in the applied data set or used optimizations restrictions and settings.
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6. EMPIRICAL RESULTS AND DISCUSSION

This chapter includes the empirical results and discussion of this thesis which are pre-

sented in two main steps. The first part focuses on the implied volatility surfaces whereas

the second part considers the model calibrations of the Heston and Bates models.

6.1 Implied volatility surfaces

As mentioned in Section 5.4, the implied volatility surfaces in this empirical part were

created by taking a snapshot at 24-hour intervals. When plotting these IV-surfaces the

log moneyness (log S
K

) was applied instead of normal moneyness ( S
K

). This means that

at-the-money options (ATM) equal to 0 and conclusively in-the-money (ITM) and out-the-

money options (OTM) represent positive and negative values. The implied volatility sur-

face based on the BTC option quotes of the first data snapshot on the 30th of September

2021 is given in Figure 6.1.

When observing the plotted IV surface, the formed smile effect where the implied volatil-

ity increases when moneyness either decreases or increases, is clearly visible. This is

mostly attributable to the general insight that ITM and OTM options cover additional risk

driven by possible large movements in the underlying away from the ATM position. Cor-

responding to that increased risk, ITM and OTM options are typically priced higher as

highlighted in Section 3.4.

The smile function achieves its minimum near the ATM, following general principles of

the implied volatility surface modelling. The smile appears very clearly at short time to

maturities, whereas it becomes more and more indefinite as time to maturity increases.

In addition, a typical pattern for ITM options can be observed, where the implied volatility

gradually decreases while time to maturity increases. These observations are supported

by Fengler (2005, p. 30-32).

From a cryptocurrency perspective, the formed smile at short time to maturities also

seems to be reasonable. In their study, Zulfiqar and Gulzar (2021) verified the existence

of an implied volatility smile in bitcoin options and they argued that the smile is the deep-

est for options near expiry. They further concluded that short-term bitcoin options tend to

provide higher volatility. This observation is in line with Alexander, Deng, et al. (2022) who
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Figure 6.1. Implied volatility surface based on BTC market data from the 30th of Septem-
ber 2021.

argue that short-term options are traded more often in the bitcoin option market. There-

fore, the short-term options have a greater market risk and hence they are more sensitive

to volatility than long-term options. Relatively high demand for short-term bitcoin options

can be partly explained by the crypto-option traders’ willingness to hedge their positions

or alternatively gain higher option premiums on BTC call and put options.

The established volatility smile with short time to maturities is also rather symmetric. Sim-

ilar behaviour was also recognized by Alexander, Deng, et al. (2022) who summarized

in their research that bitcoin options provide usually a more symmetric smile compared

to the more typical "skew" shape for S&P 500 options. They noted that the slopes of

implied volatility curves for S&P 500 options turn more negative if thoughts of a stock

market crash become more topical. On the contrary, the negative left and positive right

slopes of bitcoin options’ smiles prove that both negative as well as positive price jumps

are expected.

On a general level, the implied volatility across the applied grid appears to be relatively

high. As mentioned before, implied volatility indicates the market’s view about the un-

derlying’s potential moves without considering whether the underlying moves upwards or

downwards. So roughly, on the 30th of September 2021 the market estimates that bitcoins
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have a relatively high probability for large price movements in either direction. This seems

reasonable by reflecting the historical performance and development of bitcoin.

The conducted implied volatility seems to fluctuate around 100%. Although it can be con-

sidered rather high for absolute terms, the level is still somewhat in line with the general

consensus on the implied volatility of bitcoin options. Based on Alexander, Deng, et al.’s

(2022) article, the ATM volatility of the bitcoin IV curve usually fluctuates around 100%,

being at the same time very variable. The authors also noted that the bitcoin IV curve is

much higher compared to the IV curves of S&P 500 options where the ATM volatility has

been around 20% for a long time.

Figure 6.2. Implied volatility surface based on BTC market data from the 22nd of October
2021.

When the IV surfaces were formed over the review period, it was noticed that the plotted

surfaces deviate quite a lot from each other. With respect to each surface, we can still ob-

serve a rather clear smile effect at short time to maturities. However, as timet to maturity

increases, the surfaces become heavily forward skew shaped. The forward skew repre-

sents a specific volatility profile where OTM call options and ITM put options are priced at

a higher implied volatility. However, according to Zulfiqar and Gulzar’s (2021) study, this is

not an unusual situation for bitcoin options. In their study, most of the conducted volatility

smiles of the BTC options ended up in the forward skew shape. They further noted that
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Figure 6.3. Implied volatility surface based on BTC market data from the 31st of October
2021.

this forward skewness observed in BTC options is driven by the increased demand for

buying OTM calls to hedge bitcoin price risk. Similar observations were provided also

by Hoang and Baur (2020) as part of their research on forecasting bitcoin volatility. The

differences across the review period are illustrated in Figures 6.2 and 6.3, where the IV

surfaces are based on snapshots from the middle and end of the review period. The

previously mentioned forward volatility skew can be seen clearly from Figure 6.2.

There are several explanatory factors that drive the differences between the surfaces

across the review period. On a general level, the changes in the formed surfaces can be

partly explained by bitcoin’s tendency to be just a really risky asset. General factors such

as regulations, continuous media hype as well as just the irrational behaviour of investors

can heavily accelerate the fluctuation of bitcoin’s price. Consequently, this can change

the shape of the surface considerably even within a short period of time. Bitcoin’s strong

price changes were also empathized by W. Zhang et al. (2021) and Alexander, Deng,

et al. (2022) in their studies, where they stated that the fundamental value of bitcoin

and the factors driving its price are still rather unclear and not widely acknowledged.

Correspondingly, also Hou et al. (2020) highlighted the volatile price behaviour of bitcoin.

They argued that BTC option prices are heavily driven by jumps causing changes in the
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shape of the IV curves.

In addition, implied volatility surfaces can be strongly impacted by certain types of logical

explanations such as the expiration of certain maturity-strike option combinations or new

supply and demand conditions. Unexpected changes within supply or demand cause

variation in the option price, and thus also in the implied volatility. This is supported,

for example, by Fengler (2005, p. 44) who highlighted the contribution of supply and

demand conditions to the shape of the smile. On top of that, also Bollen and Whaley’s

(2004) empirical results indicate that implied volatility is directly related to the options’

demand and supply pressure. With respect to BTC options, net buying pressure and

trading motives have been studied by Alexander, Deng, et al. (2022).

Alexander, Deng, et al. (2022) summarized that bitcoin option traders are generally less

risk averse than, for example, more common S&P 500 options traders. Furthermore, they

noted that the bitcoin option traders comply with volatility-motivated demand. When the

traders are volatility-motivated, volatility shocks to the underlying asset leads to changes

in traders’ expectations towards volatility. In other words, volatility shocks would shift the

option supply curves and consequently affect the implied volatility smile and surface.

6.2 Model calibrations

Similarly to the implied volatility surfaces, both models have been calibrated to BTC data

from the 30th of September 2021 to the 31st of October 2021 by applying a data snapshot

at 24-hour intervals. The used assumptions and settings related to the calibration process

were presented in more detail within in 5.5.

In the big picture, the model calibrations for the Heston model went fairly smoothly while

the calibrations for the Bates model were slightly more problematic. With the Bates model,

the calibration process for each data snapshot took a comparatively long time and the

deviation in some parameters were somewhat large and appeared to be unreasonable

for absolute terms. Of course, it must be understood that the Bates model has three

additional parameters compared to the Heston model bringing extra complexity to the

table. To get a better overall picture, the IV-MSE development across the review period is

presented in Figure 6.4.

When observing the IV-MSE development from Figure 6.4, it can clearly be seen that

the IV-MSEs obtained as a result of the calibrations follow the same trend. While the IV-

MSE for the Bates model increases, the IV-MSE provided by the Heston model increases

accordingly, and vice versa. However, it can be noted that the changes were not so

sensitive for the Bates model.

Furthermore, each calibration round for the Bates model resulted in a smaller mean

squared error compared to the Heston model indicating that the Bates model allows for a
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Figure 6.4. Implied volatility mean squared errors for calibrating the Heston and Bates
models to BTC option data from the 30th of September 2021 to the 31st of October 2021.

better fit between the model and quoted implied volatilities without considering any other

aspects, such as how appropriate the parameters actually were in terms of pricing. This

is in line with Kienitz and Wetterau’s (2013, p. 508) arguments that the additional jump pa-

rameters of the Bates model can be used to better fit the short end of the implied volatility

surface. In other words, the processes involved in the Heston model are continuous and

cannot move so steeply as argued by Sayer and Wenzel (2015). This relationship can be

observed easily from Figure 6.5 where both models were calibrated to BTC options of the

first data snapshot from the 30th of September 2021 (Figure 6.1).

Overall, both models still produced a relatively good fit for short-maturity options consider-

ing the evidence that such options typically represent high liquidity (Fengler, 2005, p. 20)

and thus are likely to reflect market’s fair value improving the calibration results (Büchel

et al., 2022; Sayer and Wenzel, 2015). On the contrary, the fit became more indefinite

as time to maturity increased since the liquidity of the options was lower. Especially with

calibrations in the cryptocurrency context, the selected options should be evaluated extra

carefully as crypto markets are not generally considered as liquid as more established

asset classes as stated by Alexander, Heck, et al. (2022).

When looking at the development of model parameters, first on the list is the mean re-

version speed of variance of κ. Timely evolution of κ as well as histograms of the daily

changes are given in Figure 6.6.
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(a) Heston model

(b) Bates model

Figure 6.5. Model calibrations of both models compared to the quoted implied volatility
surface based on the first data snapshot from the 30th of September 2021.
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Figure 6.6. Top: timely evolution with standard errors of the mean reversion speed of
variance κ across the review period from the 30th of September 2021 to the 31st of Oc-
tober 2021. Bottom: histograms of the daily changes in terms of the mean change of
κ.

When considering the development of κ for both models, it can be observed that the

mean reversion speed of variance was somewhat high for absolute terms regarding each

calibration round across the review period. A high value of κ indicates a higher speed

of the reversion of the process towards its long-term variance of θ. Moreover, according

to Escobar and Gschnaidtner (2016), a higher value of κ also makes out-of-the-money

call options more expensive, which can be considered reasonable considering the ob-

served forward skewness of the quoted implied volatility surfaces in Section 6.1. From

a cryptocurrency perspective, higher values of κ are also supported by Madan et al.’s

(2019) research, where the Heston model calibration to BTC options over time produced
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Figure 6.7. Top: timely evolution and standard errors of the long-term variance θ across
the review period from the 30th of September 2021 to the 31st of October 2021. Bottom:
histograms of the daily changes in terms of the mean change of θ.

primarily higher values for κ than for other parameters.

Further, it could be noticed for both models that the average standard error for κ ended up

with rather large values in comparison to the other parameters. This practically indicates

that the calibration results are not very sensitive to overall changes in κ. Furthermore,

timely evolution of κ also reflects some irregularity between the Heston and Bates models.

The same behaviour was also observed by Kienitz and Wetterau (2013, p. 509) during

their own calibrations. The parameters of the Bates model may follow a different trend

because market movements can be compensated by changes in the additional three

parameters.
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Figure 6.8. Top: timely evolution and standard errors of the initial variance v0 across
the review period from the 30th of September 2021 to the 31st of October 2021. Bottom:
histograms of the daily changes in terms of the mean change of v0.

With regards to the long-term variance of θ and the initial variance of v0, from both models

it can be seen that across the review period each of the calibration rounds resulted in a

higher value of θ compared to the initial variance of v0. This indicates that volatility will

increase eventually in the future since the estimated value of vt will approach θ when time

t grows towards infinity. A similar connection between θ and v0 can be recognized from

Madan et al.’s (2019) research, where the Heston model calibration to BTC options over

time produced also higher values for the long-term variance than for the initial variance.

The behaviour of θ and v0 is illustrated in Figures 6.7 and 6.8.

As can be seen from Figures 6.7 and 6.8, the average standard errors of θ and v0 were
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relatively low for both models. Driven by this, the changes in these parameters can be

considered to have a significant effect on the outcome of the calibrations behaving in

the opposite way compared to κ. With respect to stability, it was noted that especially

the development of θ for the Heston model appeared to be rather stable changing on

average 0.36% per day. In other respects, there seemed to be some variation until the

20th of October, after which the movements for both parameters became more stable and

aligned between the models.

When it comes to the volatility of volatility η, the development and movements were quite

similar to the mean reversion speed of variance of κ. The average standard error of η was

relatively large and the observed daily changes were rather big at the beginning of the

period levelling off towards the end (Figure 6.9). On a general level, η ended up with quite

high values for absolute terms, being in line with Madan et al.’s (2019) study where the

Heston model was calibrated to BTC options. As stated by Kienitz and Wetterau (2013,

p. 62), high values of η results in an overall higher realized variance and leads to a more

volatile behaviour of the price path for the underlying asset. This seems to be reasonable

when reflecting on the historical performance and development of bitcoin.

With regards to the correlation of ρ (Figure 6.10), an interesting observation was made.

The correlation between the two Wiener processes were positive during the whole review

period for both models. As mentioned in Section 4.4 the correlation of ρ impacts on the

skewness of the return’s distribution, and moreover it defines the skewness of the implied

volatility smile. In particular, positive values of ρ cause a positive skew in the return

distribution because higher returns go hand in hand with higher volatilities, stretching the

right tail of the return distribution. Furthermore, Cížek et al. (2005, p. 173) especially state

that positive correlation makes call options more expensive whereas negative correlation

accelerates the price of put options.

Nonetheless, there have been relatively few indications of a positive correlation in the lit-

erature since typically the correlation between returns and volatility is negative. However,

the dynamics of cryptocurrencies differ in many ways from more regular assets. Accord-

ing to Alexander and Imeraj’s (2020) article, one feature of bitcoin deviating from equity

markets is the volatility of BTC not always being negatively correlated with its returns.

This is in line with Hou et al.’s (2020) study on pricing BTC options where the correlation

of ρ ends up at positive values with both the Heston and Bates models. The authors noted

that the observed non-negative relation between returns and volatility can be possibly ex-

plained with the following features: (i) the irregularity of the BTC market, (ii) the price is

heavily driven by emotions and sentiments and (iii) the BTC price is not informative since

there are no fundamentals allowing the BTC market to define a fair value for bitcoin (Hou

et al., 2020). Both of these articles support the results obtained in this thesis.

In other respects, the average standard error of the correlation appeared to be relatively
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Figure 6.9. Top: timely evolution and standard errors of the volatility of volatility η across
the review period from the 30th of September 2021 to the 31st of October 2021. Bottom:
histograms of the daily changes in terms of the mean change of η.

low for both models. Therefore, the calibration results react sensitively to changes in

the correlation ρ having the same characteristics as the long-term variance θ and initial

variance v0.

When it comes to the jump diffusion parameters that are only characteristic for the Bates

model, they also provided somewhat interesting outcomes. By including the (i) mean jump

size k, (ii) standard deviation of the jump size δ and (iii) intensity jump parameter λ in the

calibration procedure, each calibration round took significantly more time to complete in

comparison to the Heston model. Also, the overall variation within the Bates parameters

was more noticeable since those additional jump diffusion parameters provided more
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Figure 6.10. Top: timely evolution and standard errors of the correlation ρ across the
review period from the 30th of September 2021 to the 31st of October 2021. Bottom:
histograms of the daily changes in terms of the mean change of ρ.

flexibility to fit the model implied volatilities to the shape of the market IVS.

As can be seen from Figure 6.11, the mean jump size of k ended up with a negative value

for each calibration round. This indicates that the typical direction of an occurring jump in

the price process would be downwards. Furthermore, the standard deviation of the jump

size of δ practically remained nearly identical to zero throughout the review period. Since

the jump diffusion parameter of δ defines the standard deviation around k, it indicates that

the jump height appears to be rather deterministic without having randomness involved in

the jump height development.

In terms of the jump intensity of λ, the development across the review period was some-



61

Figure 6.11. Top: timely evolution and standard errors of the mean jump size k across
the review period from the 30th of September 2021 to the 31st of October 2021. For
illustrative purposes, this Figure also includes the development of the standard deviation
of the jump size δ over the review period, although the values remained nearly identical
to zero. Bottom: a histogram of the daily changes in terms of the mean change of k.
Note that the daily change histogram for δ has been excluded from the analysis since the
obtained values of δ were so close to zero.
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Figure 6.12. Top: timely evolution of the jump intensity λ across the review period from
the 30th of September 2021 to the 31st of October 2021. Bottom: a histogram of the daily
changes in terms of the mean change of λ.
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what irregular (Figure 6.12). On absolute terms, the values of λ increased rapidly at the

beginning of the review period indicating relatively high frequency of jumps. However,

already within the next calibration round, λ behaved the opposite way and dropped sig-

nificantly, remaining fairly stable towards the end of the period. The observed changes

in λ highlight the importance of the input values, which is also emphasized by Escobar

and Gschnaidtner (2016). Even though previously calibrated parameters were used as

starting values for the next calibration in this thesis, the outcome can be really distorted if

market conditions change suddenly causing challenges to the local optimization algorithm

to find the true minimum.

For the most part, the obtained results for the jump diffusion parameters were supported

by Hou et al.’s (2020) study about pricing BTC options. The authors used a notably higher

value for δ compared to the calibrations in this thesis but their estimations for k and λ were

consistent with the here received results (after λ was levelled off at the end of the review

period).

By looking at the average standard errors, it can be observed that the calibration results

were also rather sensitive to the variation of the mean jump size of k. When it comes

to λ, the average SE ended up at really high values driven by the rapid changes in the

beginning. Even though the calibrated lambda became more stable towards the end of

the period, its average standard error of 47.811 was easily the highest in relation to other

parameters. With respect to δ, this thesis was unable to reliably determine the standard

error as noted in Section 5.5. However, it seemed to vary quite a lot during calibration

rounds with little effect on the resulted IV-MSE.

Even though the achieved fit between model and market surfaces across the review pe-

riod looked rather good for certain options, it neither necessarily means that the calibrated

parameters represent true parameters nor that they are suitable in bitcoin option pricing in

the long run. As stated in Section 4.1, the calibration process practically always involves

some level of model and calibration risk. These risks can be partly managed by (i) per-

forming a sufficient number of re-calibrations, (ii) carrying out an out-of-sample analysis

where the calibration will be accomplished again through a data set that was not used in

the calibration in the first place or (iii) considering some additional safety margin in the

option price to cover potential calibration-related risks as suggested by Guillaume and

Schoutens (2012).

In summary, the empirical analysis proceeded as expected and it provided interesting

observations about the implied volatility surfaces of bitcoin options as well as model cali-

brations for the Heston and Bates models. Most of these observations were supported by

previous studies from the literature. The main findings and conclusions are summarized

in Section 7.1.
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7. CONCLUSIONS

7.1 Principal findings

The purpose of this master thesis was to conduct a calibration of asset pricing models to

the European-style call options, which use the bitcoin as an underlying asset. Further-

more, this thesis aimed at covering the following research questions, keeping the main

focus on the latter one. Firstly, what kind of implied volatility surfaces did European-style

bitcoin call options develop, and how did those change across the review period. Sec-

ondly, what kind of parameters and mean squared errors were obtained when the Heston

and Bates asset pricing models were calibrated against quoted implied volatility surfaces,

and how did those parameters and mean squared errors develop throughout the review

period.

Based on the constructed implied volatility surfaces, the variation throughout the review

period was relatively large even though the review period was only one month long. De-

spite the previous research on the BTC derivative markets being rather limited, some

familiar features were identified from the quoted IV surfaces. During the review period,

each IV surface provided a rather clear smile ending in either a fairly symmetrical or for-

ward skewed shape. The smile appeared very clearly for short-term options, whereas it

became more and more forward skew shaped as time to maturity increased. A forward

skew shape is partly attributable to increased demand for OTM call options to hedge

bitcoin’s price risk since the crypto market suffers from higher downside risk compared

to the normal stock market. Moreover, the observed implied volatility levels within each

quoted IV surface were much higher than what normally can be seen with S&P 500 op-

tions reflecting a high volatility tendency for bitcoin.

Since the review period was relatively short, a more comprehensive statistical analysis

of the differences between the surfaces could not have been carried out for this the-

sis. However, several factors were identified and reviewed which could possibly explain

these differences. Many of these were related to unexpected changes in bitcoin’s price

since its value fundamentals and return drivers are still rather unclear and not widely ac-

knowledged. Apart from that, bitcoin traders’ volatility-motivated demand and risk-averse

behaviour may cause impulses in the option supply and demand curves which can lead

to rapid changes in the IV surfaces even within a short period of time.
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Based purely on the calibration results, both models have capabilities for pricing BTC

options especially those with short time to maturities. Even though crypto markets are

generally not considered as liquid as more familiar assets, such options with short ma-

turities typically represent high liquidity and thus are likely to reflect market’s fair value

improving the calibration results. It is noted that by excluding the type of options with rela-

tively low liquidity or alternatively considering weights in calibration, giving more relevancy

to ATM options, would have possibly led to better results. Overall, the resulted errors be-

tween the IV surfaces were clearly smaller within the strike dimension compared to the

maturity dimension. In comparison with the Heston model, the calibrated parameters of

the Bates model resulted in a better fit although they encountered more variation and

calibration rounds took more time to complete. This was mostly attributable to additional

jump diffusion parameters of the Bates model that provided more flexibility to fit the model

implied volatilities to the shape of the market IVS.

When observing the calibrated parameters, they did not only reflect a relatively high

volatility for bitcoin but also that bitcoin’s volatility itself is very volatile. Furthermore,

being more or less characteristic of the crypto market, the correlation for both models

ended up with positive values across the review period indicating a non-negative relation

between returns and volatility. This behaviour deviates from a typical negative leverage

effect in equity markets. Based on the jump diffusion parameters of the Bates model, the

typical direction of an occurring jump in the price process follows a downward trend. Fur-

thermore, the jump height seems to be rather deterministic without having randomness

involved in the jump height development. Moreover, daily average variations in the jump

diffusion parameters were more noticeable compared to other parameters.

By looking at the average standard errors, the calibrated parameters such as initial vari-

ance v0, long-term variance θ, correlation ρ as well as mean jump size k resulted in

relatively small standard errors. Based on these observations, those parameters have

a greater impact on the outcomes of the calibration representing greater calibration risk.

Therefore, those parameters and their initial values as well as possible restrictions should

be considered more precisely compared to the remaining parameters. Overall, it is recom-

mended to re-calibrate the models every time the parameters are used in option pricing

to reduce possible calibration risks. This is important especially in this study since the

parameters encountered comparatively high variation during the review period.

Since the used review period was quite narrow, the importance of the initial values in-

creases. Perhaps with more accurate initial values for λ and δ, the jump intensity would

neither have had a rapid increase in the beginning nor would the standard deviation of

the jump size have decreased to nearly identical to zero. On the other hand, this raises a

question about the applied optimization algorithm. Especially since previously calibrated

parameters were used as starting values for the next calibration, sudden changes in mar-

ket conditions could cause challenges to the local optimization algorithm to find the true
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minimum. Therefore by using global optimization instead of local would have probably led

to better calibration results.

All in all, with a longer review period, the development of each parameter could have been

evaluated more precisely, and thus produce a better understanding of the behaviour of

bitcoin. However, since the literature on crypto derivatives can still be considered rather

limited, this thesis may offer new perspectives and insights to practitioners.

7.2 Further research

This thesis gives outlines for further research. First of all, the concluded results should

be validated through a longer review period for evaluating possible drivers and patterns

behind parameter changes and implied volatility. Moreover, the pricing models of crypto

derivatives should be further explored. Even though there are some studies about the val-

uation of bitcoin options, there are no accurate valuation approaches that would capture

the nature of cryptocurrency and define the values of crypto derivatives in a consistent

fashion.

Another important topic for further research would be to build a coherent consensus

around a model calibration process within the cryptocurrency context. It is noted that

a model calibration process in equity option pricing is a widely reviewed subject and the

main fundamentals such as choosing the relevant input values and loss function have

been studied rather closely in previous studies. However, a similar comprehensive and

detailed analysis has not been done from a cryptocurrency perspective. Since bitcoin

is known for its exceptional and unregulated monetary policy as well as highly sensitive

price development in the environment of a limited amount of currencies, using traditional

calibration methods does not necessarily make sense. This topic could provide more

support to the already complex valuation process.
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