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ABSTRACT
Exploratory analysis of gaze data requires methods that make it
possible to process large amounts of data while minimizing hu-
man labor. The conventional approach in exploring gaze data is
to construct heatmap visualizations. While simple and intuitive,
conventional heatmaps do not clearly indicate differences between
groups of viewers or give estimates for the repeatability (i.e., which
parts of the heatmap would look similar if the data were collected
again). We discuss difference maps and significance maps that an-
swer to these needs. In addition we describe methods based on
automatic clustering that allow us to achieve similar results with
cluster observation maps and transition maps. As demonstrated with
our example data, these methods are effective in highlighting the
strongest differences between groups more effectively than conven-
tional heatmaps. .1

CCS CONCEPTS
•Human-centered computing→ Interaction techniques;Heat
maps; Empirical studies in HCI ; Visual analytics;

KEYWORDS
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1 INTRODUCTION
The origins of exploratory data analysis are often tracked to Tukey’s
work, much of which is summarized in the 1977 book [Tukey 1977].
Tukey avoided a clear definition for the term possibly because it
can have multiple meaningful uses in different contexts [Brillinger
2011]. In this paper we understand exploratory data analysis as
a process where the goal is to understand the collected data as
well as possible with the aim of constructing hypotheses for future
experiments. After Tukey’s pioneering work, a number of gaze data
visualization methods have been developed, for a survey, see e.g.
[Blascheck et al. 2017] or [Coutrot et al. 2018].

We will describe and discuss the use of two methods, heatmaps
and clustering, in the context of a gaze data set collected from
Finnish and Korean viewers while they completed a novel experi-
mental task. The task was to write a short description of what was
seen while viewing photos on a computer display. While heatmaps
and clustering of gaze data are not novel as such, some of the vi-
sualizations that we constructed such as temporally segmented

significance maps and highlighted cluster transition maps have not
been described before in gaze data context.

A central theme in this paper is that ordinary PCs have comput-
ing power and memory resources to work with computations that
were previously unimaginable (see e.g. the work by [Duchowski
et al. 2012]). Using a large number of bitmaps with millions of pixels
for computation and running clustering algorithms on hundreds of
thousands of gaze points is no longer prohibitively expensive. Be-
cause such computation can save human labor, it should be utilized
to the fullest.

2 HEATMAPS
One of the first heatmaps for visualizing gaze data was produced
by [Pomplun et al. 1996]. Their goal was to visualize the area where
viewers directed their visual attention in picture viewing. Con-
sequently, they called their visualizations attentional landscapes.
Such landscape is formed by dropping Gaussian distributions at
the location of fixations and summing them up. The result is a
landscape with the highest peak where the most fixations landed
and possibly other peaks in other parts of the scene.

The attentional landscape can be visualized as a 3D height field
or by modifying color or transparency of a layer on top of the
original scene. Modern operating systems and programming en-
vironments include tools for creating images with layers that can
vary in transparency. Thus the most straight-forward method of
implementing attention maps is to utilize multiple layers of bitmaps
with the top layers partially transparent. Thus, instead of following
the luminance terminology of Pomplun et al. in this paper we will
talk about transparency.

The approach we took was to consider a pixel in heatmap as
the basic unit of computation and see what useful metrics could be
generated by combining the information from several heatmaps.

The outcome of our exploration included many heatmap visual-
izations that are familiar from earlier work. However, we contribute
the notion that only the ”combining function” used in combining
the data from heatmaps drawn for individuals needs to change in
producing the majority of different heatmap visualizations. As an
additional dimension, if the visualization pipeline stays the same
but the segment of the data that is fed to it changes, one can produce
temporal visualizations that add the much needed [Holmqvist et al.
2011] temporal dimension to heatmap-based visualizations.

Next we will describe four variants of heatmaps that are useful
in explorative analysis of gaze data. The computational details are
described in a separate section after the visualization descriptions.
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2.1 Attention Map
The original goal of [Pomplun et al. 1996] was to visualize the
distribution of the viewers attention on the image. This happened
under the eye-mind hypothesis that assumes that the point of gaze
also reflects the focus of visual attention.

Pomplun et al. chose the Gaussian distribution to visualize the
focus of attention. The justification for this choice was not explicitly
described, but we can hypothesize multiple reasons including, that
it is a good approximation for random noise, that may be present
because of measurement error or eye orientation error. Also, the
standard deviation of the distribution (1◦) corresponds approxi-
mately to the size of the part of the visual scene that is projected
on the fovea. Thus, the attention map is also a focal map showing
the parts of the image that have been projected onto the foveas of
the viewers.

The distribution parameters chosen by Pomplun et al. have not
been seriously challenged in subsequent attention mapping work.
We do not wish to do this either. In our visualizations we used
the eye-display distance reported by the eye tracker to scale the
standard deviations of the Gaussian distributions to be exactly
one degree of visual angle regardless of the participant’s head
movements.

Once the attention map has been computed, it can be displayed
in many ways. A 3-dimensional height field is sometimes seen (e.g.
[Sprenger et al. 2013; Wooding 2002]). Transparency map or a color
display on top of the original image are also frequently seen. Figure
1 shows our example data2 as transparency in a black layer on top
of the original scene.

2.2 Deviation Map
In [Schiessl et al. 2003] different colors were mapped to different
viewer groups. However, there are situations where the setup does
not have two groups a priori. Then the question is how do we find
the areas that were viewed differently? One approach is to use a
measure of dispersion as the combining function. Variance and
standard deviation are the commonly used measures of dispersion
in statistics. Thus they are the obvious choices for combination
functions in heatmaps that visualize differences in viewing patterns.
We call these kinds of heatmaps deviation maps. Figure 2 shows
a deviation map drawn based on standard deviation of the pixel
values in per-participant heatmaps.

Deviation maps can be useful in exploratory data analysis. A re-
gion of high dispersion may indicate differences in the distribution
of attention between participants.

2.3 Difference Map
In [Wooding 2002] it was suggested to subtract heatmaps from each
other to create difference maps that have highest points in places
where one heatmap is “hot” and the other is “cold”. These regions
2The data were collected while viewing pictures on a 17” LCD display. In South Korea
a Tobii X2-60 tracker was used and in Finland a Tobii T-60, both with a capture rate
of 60 Hz. The participants were recruited from a university community. In Korea
the average age of the participants was 21.9 years (SD=3.4). In the Finnish group the
average age was 23.4 years (SD=4.4).

The task of the participants was to write an answer to a question presented before
the image into the text box below the image. 8 in each country answered to “What do
you see in the image?” and the other 8 to “Why was this picture originally taken?”.
The minimum length of the answer was 2 rows of text. There was no time limit.

Figure 1: A heatmap with transparency of a black over-
lay showing the most attended areas. The displayed data
is from the first two seconds of viewing by a group of 16
Finnish viewers and 16 South-Korean viewers. The photo
has been released by Samsung under the Creative Com-
mons ”Attribution-NonCommerical-ShareAlike 2.0” license.
Photo source: https://flic.kr/p/gt2ju4

Figure 2: Deviation map for the data in Figure 1.

show areas that are of interest in comparisons of two groups of
users or two scenes. A related approach was used by [Schiessl et al.
2003] in generating heatmaps with two different colors showing
the distribution of attention of two groups of viewers on the same
image.

Our version of this visualization is shown in Figure 3. In com-
parison to the attention and deviation maps, the difference map
more clearly suggests an interpretation of the data. It seems that
dominant Korean focus was on people (especially the female in the
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middle) whereas dominantly Finnish focus was on the Kimchi con-
tainers and the male on the right of the female dominantly attended
by the Koreans.

(a) Finns (b) Koreans

(c) Difference map

Figure 3: Two attention maps and a difference map for the
same data. The red areas were viewed more by the Finnish
viewers and green areas were viewed more by the Korean
viewers.

2.4 Significance Map
Interpreting difference maps can be deceptive. Based on a difference
map only, we do not know how red or green an area needs to be
in order for the difference to be large enough to be worth further
investigation. For example, an area might be colored because only
one or two participants attended to it excessively. We would like to
know which differences we can expect to repeat if we collected the
same kind of data again.

In statistical hypothesis testing, we compute statistics such as t
and F that take into account the difference between group means
and also the variability within each group. Since we can compute
any statistic for each pixel of a heatmap, we can also compute the t
statistic. In fact this method has been used for a long time in other
fields of science, e.g. in functional brain imaging (see e.g. [Bennett
et al. 2009]) where the imaging results consist of blocks of voxels
(pixels in three dimensions). The idea is to find corresponding voxels
in images from different brains and then highlight those voxels that

Figure 4: Significance map with the data shown in Figure 1.
The area with p < .01 is highlighted in red.

show different levels of activity under the conditions that are being
compared.

Figure 4 shows the now-familiar data from the earlier figures
divided according to two groups of viewers. Comparing Figures 4
and 3 we see that t statistics corresponding to p<0.01 emerged only
in one of the areas highlighted in Figure 3.

There is an effort by [Lao et al. 2016] to produce significance
maps that can be used directly for hypothesis testing. Lao et al. have
published a number of iterations of their computing framework in
response to criticism regarding the validity of inference based on it.
The 2016 iteration utilizes randomization tests for finding the per-
pixel p-threshold. We agree that this is probably the best approach.
However, randomization tests require thousands of randomization
iterations per pixel whereas a t-test requires only a single pass
variance computation and a table lookup. Thus, in the interest of
making our visualization software interactive enough, we chose to
use t-tests. This we can do because we are producing visualizations
for hypothesis generation instead of hypotheses testing.

2.5 Generation of Heatmaps
The outline of our visualization software is shown in Figure 5. On
the left we have gaze data recorded for each participant in the study.
The next step is to pick the variable to visualize. For example, to
visualize the distribution of the visual attention we pick raw data
points. Data for each participant is processed separately until a
normalized 32 bit floating point heatmap exists for each participant.
Then the data is fed to a ”combining function” that utilizes the
per-participant heatmaps to produce a bitmap. Depending on the
visualization needs, the bits on the alpha or the color channels of
the bitmap are manipulated creating the final resulting visualization
layer.

Most of the computation takes place in the heatmap generation.
Once the per-participant heatmaps exists, one can quickly explore
the effect of the different combining functions on the visualization.
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Figure 5: Outline of the computationsweused to produce the
heatmaps discussed int his paper. The process begins on the
left and ends in the creation of the heatmap visualization on
the lower right corner.

The conventional method of generating heatmaps has been to
first find fixations in eye tracking data and then draw the heatmap
based on those. This approach was recommended by [Bojko 2009]
and [Holmqvist et al. 2011]. However, we have drawn every sample
that the tracker recorded. The downside of this approach is that
some samples were recorded while the eyes were moving so fast
that saccadic suppression stopped the processing of what the eye
saw. I.e. the gaze coordinates were not indicative of attention at
that location. Vast majority of the samples, however, were recorded
during fixations. Another disadvantage in this approach is that there
is much more to compute because each fixation consists typically
of 10-60 samples. Drawing the heatmaps based on samples rather
than fixations requires more computing.

The positive sides of using samples include that we do not need
to get into the argument of which fixation detection algorithm
does the best job for us. Further, our approach works for smooth
pursuit and other eyemovements that do not consist of fixations and
saccades. Especially on low-frequency trackers the exact starting
and ending points of fixations can be difficult to measure. Yet, the
data can be quite useful for heatmapping purposes.

In the past, further savings in the computation effort have been
achieved by truncating the distributions e.g. at 2 or 3 standard
deviations (e.g. [Holmqvist et al. 2011; Špakov 2008]). Nowadays,
however, a PC can compute static heatmap visualizations from
sizable datasets thanks to the powerful parallel processing capabili-
ties in the main CPU and the display controller [Duchowski et al.
2012]. Thus such optimizations are no longer necessary except
when computing visualizations for very large data sets or when
doing real-time computations for dynamic visualizations.

The per participant heatmaps were in 32 bit floating point format.
After adding up the distributions for each sample the heatmap was
normalized by finding the largest value of the heatmap and dividing
all pixels with it. These per-participant maps were kept in memory
and used for further computations such as adding up the pixels to
produce the attention map for the whole group.

To visualize the floating point numbers a black bitmap was taken
as the starting point. Then its alpha channel was modified at each

pixel by scaling the heatmap value to the range of 0-255 and invert-
ing it (high opacity is wanted at 0 heat).

For a deviation map the process is the same except that instead
of summing the maps the standard deviation is computed. Similarly,
other statistical measures were computed and normalized to the
range of the chosen output channel.

Depending on the amount of data being processed, the genera-
tion of the heatmaps can take a while (from minutes to hours on
a typical PC with 4-8 CPU cores). However, the rest of the visual-
ization work is fast enough to be used interactively. The heatmap
generation could be speeded up significantly by utilizing the parallel
computing resources available in the graphics processors included
in typical PC configurations.

3 FILTERING LARGE DATASETS FOR
INTERESTING SEGMENTS

The ability of the heatmap to give an overview of the distribution of
attention for the whole viewing session for multiple participants at
one glance is wonderful. However, such massive aggregation of the
data also hides many details that are sometimes more interesting
than the overview. For example, if there are events that take place
only in some parts of the tracking session, it is possible that they
are not noticeable in the aggregate heatmap.

For this reason it is sometimes important to look at the data in
smaller slices. If it is not known beforehand when the interesting
events will take place, it is interesting to automate the detection
of potentially interesting segments. As described above, this can
be done by generating heatmaps for short segments of the data
and then inspecting the heatmap collection. This can be done with
conventional attention maps, but the problem is, as demonstrated
above, that attention maps always show something. Thus visually
inspecting them is slow and leads to much guesswork. This is where
the significance map is useful in highlighting the areas that show
the strongest differences.

In Figure 6 the sub-figures are significance maps for 4 seconds of
the same data fromwhere the 2 first seconds were used in the earlier
examples. Each image represents a snapshot of a 2 second sliding
window passing over the data. We can see that in comparison to
conventional heatmaps and even in comparison to the difference
map, the significance map helps in focusing the attention to the
most robust differences between the groups. Such 2-second slices
of the data can be inspected quickly. Using a video or a matrix
presentation of these images, spotting the interesting segments
from a display with several minutes worth of data takes only a few
seconds of human labor.

Depending on the number of participants, the task type, and
possibly some other considerations it may be necessary to change
the p-value that is used for flagging the areas with clearest differ-
ences. In this case we had 8 participants per group and p threshold
of 0.01 seemed appropriate as it was large enough to still produce
highlighted areas, but small enough to not produce too many of
them. We are free to tune the threshold as we see fit because the
purpose is not to use the result for statistical inference. We only
want to identify the most robust differences in the data. Figuring
out what, if anything, these differences mean must be done later
with better evidence. In the study that contributed the data for this
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(a) 0-2s (b) 1-3s

(c) 2-4s (d) 3-5s

Figure 6: Four frames in a series of two second segments of
the gaze data with one second overlap. The red highlighting
shows a potentially interesting event with the Finnish view-
ers focusing on the Kimchi containers. There were 348 other
frames (not shown) most with no highlights. All other high-
lights in the data for this image were small and isolated.

visualization there was also the text written by the participants.
Evidence for the meaning of the differences in viewing behavior
was found in the texts where the Finns explicitly expressed their
unfamiliarity with Kimchi and Koreans explicitly named Kimchi.
This led us to the hypothesis that unfamiliarity with Kimchi and
the Korean Kimpchi preparation tradition was the underlying cause
for Finns paying so much more attention to the highlighted area.

4 AUTOMATIC CLUSTERING OF GAZE
POINTS FOR EXPLORATION

While useful, the heatmap process described above has some unsat-
isfactory properties:

(1) the data is represented by gaussian distributions rather than
the authentic gaze points measured with the eye tracker. In
essence the heatmap is produced by running a smoothing
filter over the gaze data and in the process some precision is
lost.

(2) the gaze data is multiplied by distributing each gaze point
over hundreds or thousands of pixels. There is much extra
computation later when computations are done on each pixel
of the scene instead of just the gaze coordinates originally
measured.

(3) The sequence of the gaze movements is not a part of the anal-
ysis. Fixations at A and B create exactly the same heatmaps
as fixations in the reverse order (B then A).

To complement the heatmap-based exploration, we wanted to
find a complementary method that would preserve the discrete
form of the gaze data including and emphasizing the possibility to

Figure 7: The cluster centers after clustering the gaze data
into 60 clusters. Areas that were looked at a lot tend to have
clusters with a smaller area. The numbers identify the clus-
ters, they have no relation to the data. The Voronoi cell bor-
ders are overlaid on top of the gaze samples.

visualize gaze transitions between objects of interest. After some
trials we ended up with the following automatic data clustering
approach3:

(1) The gaze data was clustered to “natural” clusters by using
the K-means algorithm4 [MacQueen 1967] which minimizes
the sum of distances of all data samples to the nearest cluster
center. The cluster centers were the mean points of gaze
data belonging into each cluster (see Figure 7). The number
of cluster centers needs to be selected before running the
algorithm. After some trials we ended up using 60 clusters
out of which about 20 ended up in the text area at the bottom
of the display.

(2) The image area was partitioned into separate Voronoi cells
(see Figure 7), one for each cluster center. The algorithm
partitions even those areas where there were only a few or
no data.

(3) The sequences of gaze points for each participant was vector
quantized, transforming them to code sequences where each
gaze point was represented by the code of the Voronoi cell
where the gaze point belonged to.

(4) The code sequences (for each participant) were filtered by a
minimum code stretch length of 5. I.e. if the same code re-
peated at least 5 times it was kept, otherwise it was excluded.
The reason for this filtering was to get rid of very short visits
on a cell that were likely to be due to measurement noise or
samples recorded during saccades. The final representation
of the participants’ gazing behavior was thus a sequence of

3The proposed data clustering is one possible method to perform a spatial transform
of gaze positions as discussed in [Andrienko et al. 2012, chapter 5.2.2]
4The K-means algorithm has been used earlier for gaze data clustering by [Latimer
1988] and [Naqshbandi et al. 2016]. Also, [Privitera and Stark 2000] used K-means for
gaze data processing.
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Voronoi cell codes, one for each stretch of gazing the same
Voronoi cell.

4.1 Observation and Transition Profiles
To visualize differences between the participants or groups of partic-
ipants we calculated the histograms of gaze points on Voronoi cells
for each participant. I.e., we counted how many times each Voronoi
cell was looked at by a participant and normalized that number
by dividing by the number of all cell sightings by the participant.
The process created observation profiles where high values for some
locations meant that participant was looking the area more often
than some other areas.

As a measure of similarity we used the normalized dot-product
Da,b of the profile vectors between two participants. The computa-
tion consists of calculating the dot-product of the profiles and then
dividing the value by the product of the profile lengths:

Da,b =

∑n
i=1 ai × bi

La × Lb
, (1)

where a,b are the profile vectors, n is the number of elements, and

La =

√√ n∑
i=1

a2i , Lb =

√√ n∑
i=1

b2i . (2)

In Figure 8 we show the distributions of similarities between
participants of the same and different groups. For comparison we
also calculated a distribution of the between groups similarities by
randomizing the order of elements in the other profile vector (b in
the equations 1 and 2). The purpose of this variant was to probe
how big effect the order of the elements has in the distribution5.

The results show that mostly the Finns and Koreans viewed the
same areas for about the same duration as was already observed in
the heatmaps. The small differences suggest that Finns were slightly
more homogeneous than the Koreans. However, even a randomly
ordered profile did not differ much from the others suggesting that
this analysis method may not be very sensitive.

We also calculated a first order transition profiles based on the
gaze transitions between Voronoi cells. The transitions were the
sets of consecutive Voronoi cell pairs in the code sequences, each
pair consisting of a starting cell and a target cell. A transition pro-
file was then created by counting the number of each transition
by a participant normalized by dividing by the total number of
transitions.

In Figure 9 we show the distribution of similarities between
participants of the same and different groups, using the transition
profiles. Again, the first three distributions are similar, which indi-
cates that there were no big differences between the groups in the
transition profiles. However, the difference between the random
order profile distributions and the other distributions is large. This
shows that there is more structure in the transition profiles than in
the observation profiles.

5The used data clustering algorithm usually leads to a balanced distribution of samples
per cluster and the profiles tend to be flat on average. This is why the random order
profile does not, on average, diverge much from the others.

Figure 8: The distributions of similarity values between ob-
servation profiles of the participants within nationality, be-
tween nationalities, and in comparison to randomized clus-
ter ordering.

Figure 9: The distributions of similarity values between the
transition profiles of participants in same groups and in dif-
ferent groups. The three first distributions are similar, but
there is a clear difference between the random allocation
and others.

4.2 Observation and Transition Differences
The preceding observation and transition analysis was focused on
the aggregate results based on all observations and transitions. The
results suggest that while the overall viewing behavior was similar
among Finns and Koreans, there were also some differences be-
tween the groups. To see where the differences were, more detailed
analysis on the individual clusters and transitions were needed.

Assuming that one group of participants was paying more at-
tention to certain details in the image we would expect that the
observation profile values related to the respective Voronoi cell(s)
would be bigger for one group. To explore that idea we collected the
observation profile values related to each Voronoi cell from both
groups and tested if there were statistically significant differences
between the groups. To restrict the number of comparisons we
included only the 50 most often visited Voronoi cells.
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Figure 10: The red circles around the cells indicate that they
were observed statistically significantly more by Finnish
participants

Since the number of comparisonswas smaller than in the heatmaps
we were able to use a Monte Carlo permutation test [Dugard 2014;
Edgington and Onghena 2007; Howell 2007] to analyze possible
statistically significant differences between the groups. The permu-
tation test is not dependent on as many assumptions on the sample
distribution as some other tests, such as t-test and ANOVA [Dugard
2014]. E.g. the test sample does not have to be normally distributed.

In Figure 10 we have separately marked those cells that had
statistically significant differences between the groups (p < 0.056).
The circle markings were red if the Finnish group was visiting them
more often and green if the Korean group was visiting them more
often. For this data set red markings appeared. Clusters 22 and 43
are in the same area where the heatmap analysis found a difference.

A similar computation was run for the first order transition pro-
files, again using only the 50 most common transitions. In Figure 11
we have marked transitions with statistically significant differences
between the groups. There were two such transitions, between
clusters 22 and 43 and between clusters 9 and 53, where Finns tran-
sitioned more than Koreans. Figure 12 shows two partial raw gaze
paths for illustration on what the raw-material of the clustering
looked like.

5 DISCUSSION
5.1 Comparing Heatmaps and Clustering
In terms of the ability to highlight the most robust differences in
the gaze data heatmaps and cluster-based analyses worked well.
However, the ability to temporally segment the data is better for
the heatmap-based techniques. Heatmaps tend to get saturated
when long time-periods are inspected. When everybody has looked
everywhere, there are no differences to see. Clustering, on the other
hand is meaningful only if there is a lot of data to cluster. In very
short time segments the data is so sparse that there are not many
6We were using a Bonferroni corrected limit (p < 0.05/50) knowing that we were
doing 50 comparisons.

Figure 11: Transitions between cells: The red lines indicate
transitions where Finnish participants had statistically sig-
nificantly more transitions than the Koreans.

Figure 12: One Finnish (red) and one Korean (blue) example
of raw gaze paths during the first 6 seconds of viewing.

clusters to be found. The best way to combine the strengths of
these methods is perhaps to use the cluster analysis as a starting
point and then if temporal developments are of interest inspect the
interesting segments with heatmaps.

5.2 Significance in Significance Maps
On the surface, it may appear as if significancemaps are able towork
around the heatmap criticism by [Holmqvist et al. 2011]. They show
whether a hypothesis test is statistically significant or not while
preserving the intuitive appeal of heatmaps. One can argue that a
significance map as described above is the ultimate gridded area of
interest (AOI) approach with pixel-sized AOIs. The problem with
this is that because there are so many AOI:s, and there is no a-priori
hypothesis on which ones should light up if a given phenomenon is
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at work, the probability of finding results due to random variability
rather than an underlying interesting phenomenon is fairly large.

This is a form of the family-wise error rate (FWER) problem that
always accompanies multiple statistical tests. Luckily, the heatmap
data are not random on the pixel level. Instead larger continuous
areas are highlighted in areas where the surfaces of the attention
landscapes are, on average, far away from each other in comparison
to the per-participant variability in that area. Thus, we are not really
testing a million independent pixels, but rather a number of areas
that are dynamically created based on the gaze data distribution.

Figuring out how exactly one should control for multiple com-
parisons under these conditions is not an easy task. For further
information see the work by [Lao et al. 2016]. In this work we were
interested in extending the powerful visualization capabilities of
heatmaps. Thus, the t-tests used in the generation of the visualiza-
tions are not taken as hypothesis tests. Instead the t statistics is
considered useful because it allows us to highlight areas with the
most distinct differences between the sets of heatmaps.

5.3 Temporal Segmentation
A well-known weakness of conventional heatmaps is that they
flatten the temporal dimension. However, as has been shown pre-
viously, heatmaps can be rendered in real time to get around this
limitation (see e.g. [Duchowski et al. 2012]). All the further computa-
tions on the heatmaps are also possible to do in temporal segments
in real time or viewed from videos that were computed off-line.

With our example data set it was no coincidence that the heatmap
images used for illustrating this paper were from the first seconds
of image viewing. As the task progressed, the looking and writing
task alternated and over time different participants ended up in
different phases of the work.

Generating a temporal series of images allows the investigation
of sequences of attention focusing behavior. These series can be rep-
resented as a matrix of heatmaps, or on the same location serially
(i.e. as a video). Viewing a video representation of the data would
also be a good idea in studies that are not primarily exploratory.
Unusual participant behaviors, such as failures to follow instruc-
tions, can sometimes be spotted before proceeding to AOI analysis
or other means of testing hypotheses about the data.

5.4 Other Measures
As described above, heatmaps have conventionally been used as
attention maps. That is, the point of gaze is assumed to reflect
the focus of visual attention. The layman’s interpretation of an
attention map is that the highly attended areas are “important” for
the goals that the viewer.

However, the amount of viewing that different parts of the image
receive is not the only measure one can extract from gaze data.
Measures such as fixation duration and saccade length are often
measured in eye tracking studies. Also pupil size has been reported
in many studies. One can build heatmaps of all these variables.
Such heatmaps give an overview of the variable over the whole
scene instead of data points for predetermined areas of interest. In
future work all these variables can also be automatically mapped
to clusters and differences between groups can be tested as we did
with the transitions in this paper.

5.5 Other Considerations
Sometimes the gaze data and the visualization algorithms produce
output that is not easy to interpret. For example, we have encoun-
tered situations where one group of participants tends to have lower
precision data, both groups get high peaks on the center of the area,
but because the precision in one group is high, the peak is nar-
rower. This creates areas around the peak where one group seems
to exhibit higher amount of attention. Uninformed interpretation
of such images can lead to a false conclusion. These situations are
not easily identifiable in difference maps.

As [Holmqvist et al. 2011] point out, heatmaps can only tell
what was looked at, but not why. In the study that served as our
data source the why question was answered by examining the text
written by the participants. In our example image, the familiarity
with the Kimchi was identified as the cause for the culturally de-
termined difference in viewing based on the texts. Finnish viewers
expressed their unfamiliarity directly or through (wrong) guesses
on the nature of the material and Korean viewers explicitly named
Kimchi or Kimchi making practices.

Heatmap generation and the clustering approach produce dif-
ferent results depending on what values are set for the various
parameters such as the standard deviation of the smoothing distri-
butions, temporal segments, the number of clusters, etc. This is a
strength and a curse of exploratory data analysis. The methods need
to be flexible in order to be able to address many circumstances.
However, the number of parameters and the different results one
gets by changing their values can feel overwhelming to a user and
cause confusion for readers if reports with such visualizations are
not detailed enough.

6 CONCLUSION
We described two approaches to exploratory data analysis of gaze
data. The first approach relied on computations on the pixels of
heatmaps drawn for individual viewers in the time-frame of interest.
The second approach relied on clustering of the gaze data based on
location and follow-up analyses based on gaze transitions between
clusters. Both techniques were found to be useful. The vast majority
of the data could be quickly discarded from further analysis. This
allows efficient use of human labor in the parts of the data where
interesting differences between groups of viewers emerge.

ACKNOWLEDGMENTS
This work was supported by the Academy of Finland under grants
Mind Picture Image (decision 266285) and Haptic Gaze Interaction
(decisions 260179 and 260026).

REFERENCES
Gennady Andrienko, Natalia Andrienko, Michael Burch, and Daniel Weiskopf. 2012.

Visual Analytics Methodology for Eye Movement Studies. IEEE Transactions on
Visualization and Computer Graphics 18, 12 (Dec 2012), 2889–2898. https://doi.org/
10.1109/TVCG.2012.276

Craig M Bennett, George L Wolford, and Michael B Miller. 2009. The principled control
of false positives in neuroimaging. Social cognitive and affective neuroscience 4, 4
(2009), 417–422.

T Blascheck, K Kurzhals, M Raschke, M Burch, D Weiskopf, and T Ertl. 2017. Visual-
ization of eye tracking data: A taxonomy and survey. In Computer Graphics Forum,
Vol. 36. Wiley Online Library, 260–284.

Agnieszka (Aga) Bojko. 2009. Informative or Misleading? Heatmaps Deconstructed.
Springer Berlin Heidelberg, Berlin, Heidelberg, 30–39. https://doi.org/10.1007/

8

https://doi.org/10.1109/TVCG.2012.276
https://doi.org/10.1109/TVCG.2012.276
https://doi.org/10.1007/978-3-642-02574-7_4


978-3-642-02574-7_4
David Brillinger. 2011. Data Analysis, Explorative. In International encyclopedia of

political science, Bertrand Badie, Dirk Berg-Schlosser, and Leonardo Morlino (Eds.).
Vol. 1. Sage, 530–537.

Antoine Coutrot, Janet H. Hsiao, and Antoni B. Chan. 2018. Scanpath modeling and
classification with hidden Markov models. Behavior Research Methods 50, 1 (01 Feb
2018), 362–379. https://doi.org/10.3758/s13428-017-0876-8

Andrew T. Duchowski, Margaux M. Price, Miriah Meyer, and Pilar Orero. 2012. Aggre-
gate Gaze Visualization with Real-time Heatmaps. In Proceedings of the Symposium
on Eye Tracking Research and Applications (ETRA ’12). ACM, New York, NY, USA,
13–20. https://doi.org/10.1145/2168556.2168558

Pat Dugard. 2014. Randomization tests: a new gold standard? Journal of Contextual
Behavioral Science 3, 1 (2014), 65–68. https://doi.org/10.1016/j.jcbs.2013.10.001

Eugene Edgington and Patrick Onghena. 2007. Randomization tests. CRC Press, Boca
Raton, FL, USA.

Kenneth Holmqvist, Marcus Nyström, Richard Andersson, Rrichard Dewhurst, Halszka
Jarodzka, and Joost van de Weijer. 2011. Eye tracking: A comprehensive guide to
methods and measures. Oxford University Press.

David C Howell. 2007. Statistical methods for psychology. Thomson Wadsworth,
Belmont, CA, USA.

J. Lao, S. Miellet, C. Pernet, N. Sokhn, and R Caldara. 2016. iMap4: An Open Source
Toolbox for the Statistical Fixation Mapping of Eye Movement data with Linear
Mixed Modeling. Behavior Research Methods (2016). https://doi.org/DOI10.3758/
s13428-016-0737-x

CR Latimer. 1988. Eye-movement data: Cumulative fixation time and cluster analysis.
Behavior Research Methods, Instruments, & Computers 20, 5 (1988), 437–470.

J. MacQueen. 1967. Some methods for classification and analysis of multivariate
observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics. University of California Press, Berkeley,
Calif., 281–297. https://projecteuclid.org/euclid.bsmsp/1200512992

Khushnood Naqshbandi, Tom Gedeon, and Umran Azziz Abdulla. 2016. Automatic
clustering of eye gaze data for machine learning. In Systems, Man, and Cybernetics
(SMC), 2016 IEEE International Conference on. IEEE, 001239–001244.

Marc Pomplun, Helge Ritter, and Boris Velichkovsky. 1996. Disambiguating complex
visual information: Towads communication of personal views of a scene. Perception
25, 8 (1996), 931–948.

Claudio M. Privitera and Lawrence W. Stark. 2000. Algorithms for defining visual
regions-of-interest: Comparison with eye fixations. IEEE Transactions on pattern
analysis and machine intelligence 22, 9 (2000), 970–982.

Michael Schiessl, Sabrina Duda, Andreas Thölke, and Rico Fischer. 2003. Eye tracking
and its application in usability and media research. MMI Interaktiv - Eye Tracking
1, 06 (mar 2003), 41–50.

Andreas Sprenger, Monique Friedrich, Matthias Nagel, Christiane S. Schmidt, Steffen
Moritz, and Rebekka Lencer. 2013. Advanced analysis of free visual exploration
patterns in schitzophrenia. Frontiers in Psychology 4, 737 (2013).

J.W. Tukey. 1977. Exploratory Data Analysis. Addison-Wesley Publishing Company.
https://books.google.fi/books?id=UT9dAAAAIAAJ

Oleg Špakov. 2008. iComponent - Device-Independent Platform for Analyzing Eye Move-
ment Data and Developing Eye-Based Applications. Ph.D. Dissertation. University of
Tampere.

David S. Wooding. 2002. Eye movements of large populations: II. Deriving regions of
interest, coverage, and similarity using fixation maps. Behavior Research Methods,
Instruments, & Computers 34, 4 (2002), 518–528. https://doi.org/10.3758/BF03195481

9

https://doi.org/10.1007/978-3-642-02574-7_4
https://doi.org/10.3758/s13428-017-0876-8
https://doi.org/10.1145/2168556.2168558
https://doi.org/10.1016/j.jcbs.2013.10.001
https://doi.org/DOI 10.3758/s13428-016-0737-x
https://doi.org/DOI 10.3758/s13428-016-0737-x
https://projecteuclid.org/euclid.bsmsp/1200512992
https://books.google.fi/books?id=UT9dAAAAIAAJ
https://doi.org/10.3758/BF03195481

	Abstract
	1 Introduction
	2 Heatmaps
	2.1 Attention Map
	2.2 Deviation Map
	2.3 Difference Map
	2.4 Significance Map
	2.5 Generation of Heatmaps

	3 Filtering large datasets for interesting Segments
	4 Automatic clustering of gaze points for exploration
	4.1 Observation and Transition Profiles
	4.2 Observation and Transition Differences

	5 Discussion
	5.1 Comparing Heatmaps and Clustering
	5.2 Significance in Significance Maps
	5.3 Temporal Segmentation
	5.4 Other Measures
	5.5 Other Considerations

	6 Conclusion
	Acknowledgments
	References

