Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
  •   Etusivu
  • Trepo
  • Opinnäytteet - ylempi korkeakoulututkinto
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Jamming Detection using Wavelet Transforms

Ramesh, Aravind (2019)

 
Avaa tiedosto
Ramesh.pdf (2.718Mt)
Lataukset: 



Ramesh, Aravind
2019

Electrical Engineering
Informaatioteknologian ja viestinnän tiedekunta - Faculty of Information Technology and Communication Sciences
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2019-05-22
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201905211721
Tiivistelmä
Modern Global Navigation Satellite Systems (GNSS), such as GPS and Galileo, play vital role in providing high precision navigation and positioning services for civilian and military applications. The high precision feature of these systems is compromised in the presence of interference, particularly intentional narrowband interference otherwise commonly known as jamming. To ensure the sustainability of high precision, removal of jamming components is necessary. In order to achieve successful elimination of jamming components, efficient detection and understanding of the nature of jamming signals are vital.

In practice, signals are finite in nature and vary over time. Mathematical tools such as Fourier transforms assume signals are infinite (periodic), thereby fail to capture accurate time-related information. To overcome this situation, a sophisticated technique that captures valuable information in both time and frequency domains is required. One such technique is the wavelet transform.

Wavelet transform involves successive scaling of fast decaying wavelike oscillations known as wavelets in time and shifting it along the duration of an incoming signal. This process results in either stretching or shrinking of wavelets. Stretched wavelet facilitates the extraction of slow variations in a signal and compressed wavelet facilitates the extraction of abrupt variations.

The conceived algorithm detects the presence of jamming signals, simultaneously capturing features such as frequency, bandwidth and duration. The operational capability of the algorithm was tested for GNSS signals operating in L1 frequency band (1575.42MHz) such as GPS L1 and Galileo E1. The parameters defined to measure the efficiency of the algorithm are detection probability (Pd) and false alarm probability (Pfa). Pd is estimated for different values of jammer to signal ratio (JSR) with fixed signal to noise ratio (SNR) and Pfa depends on the choice of detection threshold (T). T is chosen such that Pfa is as low as possible. The detector works better in low noise and high jammer power scenarios.

Keywords: Jamming, Wavelets, GPS, Galileo, SNR, JSR, L1
Kokoelmat
  • Opinnäytteet - ylempi korkeakoulututkinto [34751]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Yhteydenotto | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Yhteydenotto | Tietosuoja | Saavutettavuusseloste