Vehicle to grid concept as part of power system and electricity market
Aslam, Maria (2017)
Aslam, Maria
2017
Master's Degree Programme in Electrical Engineering
Tieto- ja sähkötekniikan tiedekunta - Faculty of Computing and Electrical Engineering
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Hyväksymispäivämäärä
2017-01-11
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tty-201701021006
https://urn.fi/URN:NBN:fi:tty-201701021006
Tiivistelmä
The demand of electricity is increasing day by day with the increase in world’s population. Renewable energy sources (RES) are being integrated into the smart grid system. Renewable energy sources have fluctuating nature such as wind and solar power, and thus accurate forecasting of generation from these sources is nearly impossible. At the distribution end, load forecasting is also challenging as the load demand is not constant all the time. Hence to deal with the intermittent nature of RES and to fulfil the peak load demand, there is a need for a storage system that can be integrated with the smart grid environment. Electric vehicles (EVs) serve this purpose and replace the internal combustion engine vehicles in transportation. They are considered as mobile energy storage systems which do not only reduce the environmental pollution but also provide power to the grid in peak load time by storing energy in their batteries at off peak times when the demand is quite low.
The aim of this thesis is to understand the concept of V2G. It includes the short introduction of different types of EVs, their construction, advantages and issues related to them. Charging of EVs is considered as an important phenomenon as the penetration of large fleet of EVs in the grid when behaving as a load (charging), would impact the power system and may cause overloading. Thus to avoid this situation, an intelligent charging infrastructure is needed which is explained in this thesis. There are different applications for using EVs as supplying energy back to the system, such as vehicle to home (V2H), vehicle to building (V2B), vehicle to grid (V2G) etc. EVs charge their batteries in off peak time and then discharge them by connecting to the grid when the load demand is very high. This way of supplying power back to the grid is known as V2G.
The main concern of this thesis study is to analyze the different aspects of V2G. Basically, this thesis is a literature review of V2G concept and explained its mechanism, benefits, applications and challenges associated with it. Different case studies have been analyzed which explained the implementation of V2G. Moreover, this thesis demonstrates the concept of ancillary services provided by EVs in V2G mode. These ancillary services include frequency regulation and spinning reserve. Impact of V2G on power system has been studied in detail. Electricity market competition will increase with the increasing number of EVs which are supplying ancillary services to the grid.
The aim of this thesis is to understand the concept of V2G. It includes the short introduction of different types of EVs, their construction, advantages and issues related to them. Charging of EVs is considered as an important phenomenon as the penetration of large fleet of EVs in the grid when behaving as a load (charging), would impact the power system and may cause overloading. Thus to avoid this situation, an intelligent charging infrastructure is needed which is explained in this thesis. There are different applications for using EVs as supplying energy back to the system, such as vehicle to home (V2H), vehicle to building (V2B), vehicle to grid (V2G) etc. EVs charge their batteries in off peak time and then discharge them by connecting to the grid when the load demand is very high. This way of supplying power back to the grid is known as V2G.
The main concern of this thesis study is to analyze the different aspects of V2G. Basically, this thesis is a literature review of V2G concept and explained its mechanism, benefits, applications and challenges associated with it. Different case studies have been analyzed which explained the implementation of V2G. Moreover, this thesis demonstrates the concept of ancillary services provided by EVs in V2G mode. These ancillary services include frequency regulation and spinning reserve. Impact of V2G on power system has been studied in detail. Electricity market competition will increase with the increasing number of EVs which are supplying ancillary services to the grid.