Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • Artikkelit
  • Näytä viite
  •   Etusivu
  • Trepo
  • Artikkelit
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification of core T cell network based on immunome interactome

Teku, Gabriel; Ortutay, Csaba; Vihinen, Mauno (2014)

 
Avaa tiedosto
identification_of_core_T_2014.pdf (974.4Kt)
Lataukset: 



Teku, Gabriel
Ortutay, Csaba
Vihinen, Mauno
2014

BMC Systems Biology 8
17
BioMediTech - BioMediTech
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1186/1752-0509-8-17
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:uta-201403041184

Kuvaus

BioMed Central open access
Tiivistelmä
Background

Data-driven studies on the dynamics of reconstructed protein-protein interaction (PPI) networks facilitate investigation and identification of proteins important for particular processes or diseases and reduces time and costs of experimental verification. Modeling the dynamics of very large PPI networks is computationally costly.
Results

To circumvent this problem, we created a link-weighted human immunome interactome and performed filtering. We reconstructed the immunome interactome and weighed the links using jackknife gene expression correlation of integrated, time course gene expression data. Statistical significance of the links was computed using the Global Statistical Significance (GloSS) filtering algorithm. P-values from GloSS were computed for the integrated, time course gene expression data. We filtered the immunome interactome to identify core components of the T cell PPI network (TPPIN). The interconnectedness of the major pathways for T cell survival and response, including the T cell receptor, MAPK and JAK-STAT pathways, are maintained in the TPPIN network. The obtained TPPIN network is supported both by Gene Ontology term enrichment analysis along with study of essential genes enrichment.
Conclusions

By integrating gene expression data to the immunome interactome and using a weighted network filtering method, we identified the T cell PPI immune response network. This network reveals the most central and crucial network in T cells. The approach is general and applicable to any dataset that contains sufficient information.
Kokoelmat
  • Artikkelit [6095]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Yhteydenotto | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Yhteydenotto | Tietosuoja | Saavutettavuusseloste