Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploring Sound vs Vibration for Robust Fault Detection on Rotating Machinery

Kiranyaz, Serkan; Devecioglu, Ozer Can; Alhams, Amir; Sassi, Sadok; Ince, Turker; Avci, Onur; Gabbouj, Moncef (2024-07-03)

 
Avaa tiedosto
Exploring_Sound_Versus_Vibration_for_Robust_Fault_Detection_on_Rotating_Machinery.pdf (14.36Mt)
Lataukset: 



Kiranyaz, Serkan
Devecioglu, Ozer Can
Alhams, Amir
Sassi, Sadok
Ince, Turker
Avci, Onur
Gabbouj, Moncef
03.07.2024

IEEE Sensors Journal
doi:10.1109/JSEN.2024.3405889
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202407247720

Kuvaus

Peer reviewed
Tiivistelmä
Robust and real-time detection of faults has become an ultimate objective for predictive maintenance on rotating machinery. Vibration-based Deep Learning (DL) methodologies have become the de facto standard for bearing fault detection as they can produce state-of-the-art detection performances under certain conditions. Despite such particular focus on the vibration signal, the utilization of sound, on the other hand, has been widely neglected. As a result, no large-scale benchmark motor fault dataset exists with both sound and vibration data. The novel and significant contributions of this study can be summarized as follows. This study presents and publically shares the Qatar University Dual-Machine Bearing Fault Benchmark dataset (QU-DMBF), which encapsulates sound and vibration data from two different motors operating under 1080 working conditions. Then, we focus on the major limitations and drawbacks of vibration-based fault detection due to numerous installation and operational conditions. Finally, we propose the first DL approach for sound-based fault detection and perform comparative evaluations between the sound and vibration signals over the QU-DMBF dataset. A wide range of experimental results shows that the sound-based fault detection method is significantly more robust than its vibration-based counterpart, as it is entirely independent of the sensor location, cost-effective (requiring no sensor and sensor maintenance), and can achieve the same level of the best detection performance by its vibration-based counterpart. This study publicly shares the QU-DMBF dataset, the optimized source codes in PyTorch, and comparative evaluations with the research community.
Kokoelmat
  • TUNICRIS-julkaisut [20153]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste