Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

MRI-based risk factors for intensive care unit admissions in acute neck infections

Vierula, Jari Pekka; Merisaari, Harri; Heikkinen, Jaakko; Happonen, Tatu; Sirén, Aapo; Velhonoja, Jarno; Irjala, Heikki; Soukka, Tero; Mattila, Kimmo; Nyman, Mikko; Nurminen, Janne; Hirvonen, Jussi (2025-06)

 
Avaa tiedosto
MRI-based_risk_factors_for_intensive_care_unit_admissions_in_acute_neck_infections.pdf (1.103Mt)
Lataukset: 



Vierula, Jari Pekka
Merisaari, Harri
Heikkinen, Jaakko
Happonen, Tatu
Sirén, Aapo
Velhonoja, Jarno
Irjala, Heikki
Soukka, Tero
Mattila, Kimmo
Nyman, Mikko
Nurminen, Janne
Hirvonen, Jussi
06 / 2025

European Journal of Radiology Open
100648
doi:10.1016/j.ejro.2025.100648
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202504163767

Kuvaus

Peer reviewed
Tiivistelmä
Objectives: We assessed risk factors and developed a score to predict intensive care unit (ICU) admissions using MRI findings and clinical data in acute neck infections. Methods: This retrospective study included patients with MRI-confirmed acute neck infection. Abscess diameters were measured on post-gadolinium T1-weighted Dixon MRI, and specific edema patterns, retropharyngeal (RPE) and mediastinal edema, were assessed on fat-suppressed T2-weighted Dixon MRI. A multivariate logistic regression model identified ICU admission predictors, with risk scores derived from regression coefficients. Model performance was evaluated using the area under the curve (AUC) from receiver operating characteristic analysis. Machine learning models (random forest, XGBoost, support vector machine, neural networks) were tested. Results: The sample included 535 patients, of whom 373 (70 %) had an abscess, and 62 (12 %) required ICU treatment. Significant predictors for ICU admission were RPE, maximal abscess diameter (≥40 mm), and C-reactive protein (CRP) (≥172 mg/L). The risk score (0−7) (AUC=0.82, 95 % confidence interval [CI] 0.77–0.88) outperformed CRP (AUC=0.73, 95 % CI 0.66–0.80, p = 0.001), maximal abscess diameter (AUC=0.72, 95 % CI 0.64–0.80, p < 0.001), and RPE (AUC=0.71, 95 % CI 0.65–0.77, p < 0.001). The risk score at a cut-off > 3 yielded the following metrics: sensitivity 66 %, specificity 82 %, positive predictive value 33 %, negative predictive value 95 %, accuracy 80 %, and odds ratio 9.0. Discriminative performance was robust in internal (AUC=0.83) and hold-out (AUC=0.81) validations. ML models were not better than regression models. Conclusions: A risk model incorporating RPE, abscess size, and CRP showed moderate accuracy and high negative predictive value for ICU admissions, supporting MRI's role in acute neck infections.
Kokoelmat
  • TUNICRIS-julkaisut [20536]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste