Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of Label Noise on Robustness of Deep Neural Network Object Detectors

Adhikari, Bishwo; Peltomäki, Jukka; Bakhshi Germi, Saeed; Rahtu, Esa; Huttunen, Heikki (2021)

 
Avaa tiedosto
Effect_of_Label_Noise_on_Robustness_of_Deep_2021.pdf (3.467Mt)
Lataukset: 



Adhikari, Bishwo
Peltomäki, Jukka
Bakhshi Germi, Saeed
Rahtu, Esa
Huttunen, Heikki
2021

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1007/978-3-030-83906-2_19
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202109066961

Kuvaus

Peer reviewed
Tiivistelmä
Label noise is a primary point of interest for safety concerns in previous works as it affects the robustness of a machine learning system by a considerable amount. This paper studies the sensitivity of object detection loss functions to label noise in bounding box detection tasks. Although label noise has been widely studied in the classification context, less attention is paid to its effect on object detection. We characterize different types of label noise and concentrate on the most common type of annotation error, which is missing labels. We simulate missing labels by deliberately removing bounding boxes at training time and study its effect on different deep learning object detection architectures and their loss functions. Our primary focus is on comparing two particular loss functions: cross-entropy loss and focal loss. We also experiment on the effect of different focal loss hyperparameter values with varying amounts of noise in the datasets and discover that even up to 50% missing labels can be tolerated with an appropriate selection of hyperparameters. The results suggest that focal loss is more sensitive to label noise, but increasing the gamma value can boost its robustness.
Kokoelmat
  • TUNICRIS-julkaisut [20709]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste