Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

TinderMIX: Time-dose integrated modelling of toxicogenomics data

Serra, Angela; Fratello, Michele; Del Giudice, Giusy; Saarimäki, Laura Aliisa; Paci, Michelangelo; Federico, Antonio; Greco, Dario (2020)

 
Avaa tiedosto
giaa055.pdf (1.636Mt)
Lataukset: 



Serra, Angela
Fratello, Michele
Del Giudice, Giusy
Saarimäki, Laura Aliisa
Paci, Michelangelo
Federico, Antonio
Greco, Dario
2020

GigaScience
giaa055
doi:10.1093/gigascience/giaa055
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/urn:nbn:fi:tuni-202007016286Julkaisun pysyvä osoite on
https://urn.fi/urn:nbn:fi:tuni-202007066326

Kuvaus

Peer reviewed
Tiivistelmä
<p>BACKGROUND: Omics technologies have been widely applied in toxicology studies to investigate the effects of different substances on exposed biological systems. A classical toxicogenomic study consists in testing the effects of a compound at different dose levels and different time points. The main challenge consists in identifying the gene alteration patterns that are correlated to doses and time points. The majority of existing methods for toxicogenomics data analysis allow the study of the molecular alteration after the exposure (or treatment) at each time point individually. However, this kind of analysis cannot identify dynamic (time-dependent) events of dose responsiveness. RESULTS: We propose TinderMIX, an approach that simultaneously models the effects of time and dose on the transcriptome to investigate the course of molecular alterations exerted in response to the exposure. Starting from gene log fold-change, TinderMIX fits different integrated time and dose models to each gene, selects the optimal one, and computes its time and dose effect map: then a user-selected threshold is applied to identify the responsive area on each map and verify whether the gene shows a dynamic (time-dependent) and dose-dependent response: eventually, responsive genes are labelled according to the integrated time and dose point of departure. CONCLUSIONS: To showcase the TinderMIX method, we analysed 2 drugs from the Open TG-GATEs dataset, namely, cyclosporin A and thioacetamide. We first identified the dynamic dose-dependent mechanism of action of each drug and compared them. Our analysis highlights that different time- and dose-integrated point of departure recapitulates the toxicity potential of the compounds as well as their dynamic dose-dependent mechanism of action.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20263]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste