Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Shearlet Transform-Based Light Field Compression under Low Bitrates

Ahmad, Waqas; Vagharshakyan, Suren; Sjostrom, Marten; Gotchev, Atanas; Bregovic, Robert; Olsson, Roger (2020)

 
Avaa tiedosto
TIP_Paper_2ndSubmission_black.pdf (7.434Mt)
Lataukset: 



Ahmad, Waqas
Vagharshakyan, Suren
Sjostrom, Marten
Gotchev, Atanas
Bregovic, Robert
Olsson, Roger
2020

IEEE Transactions on Image Processing
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/TIP.2020.2969087
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202101181412

Kuvaus

Peer reviewed
Tiivistelmä
<p>Light field (LF) acquisition devices capture spatial and angular information of a scene. In contrast with traditional cameras, the additional angular information enables novel post-processing applications, such as 3D scene reconstruction, the ability to refocus at different depth planes, and synthetic aperture. In this paper, we present a novel compression scheme for LF data captured using multiple traditional cameras. The input LF views were divided into two groups: key views and decimated views. The key views were compressed using the multi-view extension of high-efficiency video coding (MV-HEVC) scheme, and decimated views were predicted using the shearlet-transform-based prediction (STBP) scheme. Additionally, the residual information of predicted views was also encoded and sent along with the coded stream of key views. The proposed scheme was evaluated over a benchmark multi-camera based LF datasets, demonstrating that incorporating the residual information into the compression scheme increased the overall peak signal to noise ratio (PSNR) by 2 dB. The proposed compression scheme performed significantly better at low bit rates compared to anchor schemes, which have a better level of compression efficiency in high bit-rate scenarios. The sensitivity of the human vision system towards compression artifacts, specifically at low bit rates, favors the proposed compression scheme over anchor schemes.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20247]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste