Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deformability analysis and improvement in stretchable electronics systems through finite element analysis

Di Vito, Donato; Mosallaei, Milad; Vahed, Behnam Khorramdel; Kanerva, Mikko; Mäntysalo, Matti (2020)

 
Avaa tiedosto
AIMETA2019_Paper_286.pdf (3.437Mt)
Lataukset: 



Di Vito, Donato
Mosallaei, Milad
Vahed, Behnam Khorramdel
Kanerva, Mikko
Mäntysalo, Matti
2020

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1007/978-3-030-41057-5_61
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202008046388

Kuvaus

Peer reviewed
Tiivistelmä
<p>Stretchable electronic systems employ a combination of extremely deformable substrates with electrically conductive inks printed on their surface, on which components are connected. The absence of solid metal as conductive material greatly enhances the deformability of these systems. However, although being able to sustain high deformation, the presence of rigid components heavily affects the achievable deformation levels due to strain concentrations near the interconnection area. In order to improve stretchability under these conditions, a combination of research on materials for conductive inks and optimization of the employed layout is needed. Especially for the latter, the use of Finite Element (FE) modeling is very useful, since it allows to locate critical regions for deformation behavior and to perform design optimization and instability analyses. In this work, the authors show the application of this strategy to improve mechano-electrical performance of the system under uniaxial tension by modelling and then modifying the overall stiffness of specific sample regions. Depending on the specific need, different strategies can be adopted to intervene on stiffness changes, such as material addition to specific regions. This work shows that, in particular, a simple technique such as laser cutting can be used to tailor the local material parameters at a deeper level, thus allowing decrease in stiffness gradients and a general enhancement of electrical performances under high levels of uniaxial deformation of the sample, as also predicted in the FE analyses.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20709]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste