Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Do LUTS Predict Mortality?: An Analysis Using Random Forest Algorithms

Åkerla, Jonne; Nevalainen, Jaakko; Pesonen, Jori S.; Pöyhönen, Antti; Koskimäki, Juha; Häkkinen, Jukka; Tammela, Teuvo L.J.; Auvinen, Anssi (2024)

 
Avaa tiedosto
CIA-432368-do-luts-predict-mortality--an-analysis-using-random-forest-a-1.pdf (637.3Kt)
Lataukset: 



Åkerla, Jonne
Nevalainen, Jaakko
Pesonen, Jori S.
Pöyhönen, Antti
Koskimäki, Juha
Häkkinen, Jukka
Tammela, Teuvo L.J.
Auvinen, Anssi
2024

CLINICAL INTERVENTIONS IN AGING
doi:10.2147/CIA.S432368
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202403142862

Kuvaus

Peer reviewed
Tiivistelmä
<p>Purpose: To evaluate a random forest (RF) algorithm of lower urinary tract symptoms (LUTS) as a predictor of all-cause mortality in a population-based cohort. Materials and Methods: A population-based cohort of 3143 men born in 1924, 1934, and 1944 was evaluated using a mailed questionnaire including the Danish Prostatic Symptom Score (DAN-PSS-1) to assess LUTS as well as questions on medical conditions and behavioral and sociodemographic factors. Surveys were repeated in 1994, 1999, 2004, 2009 and 2015. The cohort was followed-up for vital status until the end of 2018. RF uses an ensemble of classification trees for prediction with a good flexibility and without overfitting. RF algorithms were developed to predict the five-year mortality using LUTS, demographic, medical, and behavioral factors alone and in combinations. Results: A total of 2663 men were included in the study, of whom 917 (34%) died during follow-up (median follow-up time 15.0 years). The LUTS-based RF algorithm showed an area under the curve (AUC) 0.60 (95% CI 0.52–0.69) for five-year mortality. An expanded RF algorithm, including LUTS, medical history, and behavioral and sociodemographic factors, yielded an AUC 0.73 (0.65– 0.81), while an algorithm excluding LUTS yielded an AUC 0.71 (0.62–0.78). Conclusion: An exploratory RF algorithm using LUTS can predict all-cause mortality with acceptable discrimination at the group level. In clinical practice, it is unlikely that LUTS will improve the accuracy to predict death if the patient’s background is well known.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20161]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste