Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Reinforcement Learning Current Control of Permanent Magnet Synchronous Machines

Schindler, Tobias; Broghammer, Lara; Karamanakos, Petros; Dietz, Armin; Kennel, Ralph (2023)

 
Avaa tiedosto
Deep_reinforcement_learning_current_control_of_permanent_magnet_synchronous_machines.pdf (1.362Mt)
Lataukset: 



Schindler, Tobias
Broghammer, Lara
Karamanakos, Petros
Dietz, Armin
Kennel, Ralph
2023

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/IEMDC55163.2023.10238988
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202401041065

Kuvaus

Peer reviewed
Tiivistelmä
<p>This paper presents a current control approach for permanent magnet synchronous machines (PMSMs) using the deep reinforcement learning algorithm deep deterministic policy gradient (DDPG). The proposed method is designed by examining different training setups regarding the reward function, the observation vector, and the actor neural network. In doing so, the impact of the different design factors on the steady-state and dynamic behavior of the system is assessed, thus facilitating the selection of the setup that results in the most favorable performance. Moreover, to provide the necessary insight into the controller design, the entire path from training the agent in simulation, through testing the control in a controller-in-the-loop (CIL) environment, to deployment on the test bench is described. Subsequently, experimental results are provided, which show the efficacy of the presented algorithm over a wide range of operating points. Finally, in an attempt to promote open science and expedite the use of deep reinforcement learning in power electronic systems, the trained agents, including the CIL model, are rendered openly available and accessible such that reproducibility of the presented approach is possible.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20210]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste