Hyppää sisältöön
    • Suomeksi
    • In English
Trepo
  • Suomeksi
  • In English
  • Kirjaudu
Näytä viite 
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
  •   Etusivu
  • Trepo
  • TUNICRIS-julkaisut
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Smoking is a predictor of complications in all types of surgery: a machine learning-based big data study

Gräsbeck, Helene L.; Reito, Aleksi R.P.; Ekroos, Heikki J.; Aakko, Juhani A.; Hölsä, Olivia; Vasankari, Tuula M. (2023-04)

 
Avaa tiedosto
zrad016.pdf (211.9Kt)
Lataukset: 



Gräsbeck, Helene L.
Reito, Aleksi R.P.
Ekroos, Heikki J.
Aakko, Juhani A.
Hölsä, Olivia
Vasankari, Tuula M.
04 / 2023

BJS open
zrad016
doi:10.1093/bjsopen/zrad016
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:tuni-202308047456

Kuvaus

Peer reviewed
Tiivistelmä
<p>Background: Machine learning algorithms are promising tools for smoking status classification in big patient data sets. Smoking is a risk factor for postoperative complications in major surgery. Whether this applies to all surgery is unknown. The aims of this retrospective cohort study were to develop a machine learning algorithm for clinical record-based smoking status classification and to determine whether smoking and former smoking predict complications in all surgery types. Methods: All surgeries performed in a Finnish hospital district from 1 January 2015 to 31 December 2019 were analysed. Exclusion criteria were age below 16 years, unknown smoking status, and unknown ASA class. A machine learning algorithm was developed for smoking status classification. The primary outcome was 90-day overall postoperative complications in all surgeries. Secondary outcomes were 90-day overall complications in specialties with over 10 000 surgeries and critical complications in all surgeries. Results: The machine learning algorithm had precisions of 0.958 for current smokers, 0.974 for ex-smokers, and 0.95 for never-smokers. The sample included 158 638 surgeries. In adjusted logistic regression analyses, smokers had increased odds of overall complications (odds ratio 1.17; 95 per cent c.i. 1.14 to 1.20) and critical complications (odds ratio 1.21; 95 per cent c.i. 1.14 to 1.29). Corresponding odds ratios of ex-smokers were 1.09 (95 per cent c.i. 1.06 to 1.13) and 1.09 (95 per cent c.i. 1.02 to 1.17). Smokers had increased odds of overall complications in all specialties with over 10 000 surgeries. ASA class was the most important complication predictor. Conclusion: Machine learning algorithms are feasible for smoking status classification in big surgical data sets. Current and former smoking predict complications in all surgery types.</p>
Kokoelmat
  • TUNICRIS-julkaisut [20724]
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste
 

 

Selaa kokoelmaa

TekijätNimekkeetTiedekunta (2019 -)Tiedekunta (- 2018)Tutkinto-ohjelmat ja opintosuunnatAvainsanatJulkaisuajatKokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy
Kalevantie 5
PL 617
33014 Tampereen yliopisto
oa[@]tuni.fi | Tietosuoja | Saavutettavuusseloste